Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhancing the connection between computation and experiments in electrocatalysis

Abstract

Combining computational and experimental methods is a powerful approach to understand the variables that govern catalyst performance and ultimately design improved materials. However, the effectiveness of this approach rests on the strength of the relationships between calculated parameters and experimental measurements. These relationships are complicated by the intricacy and dynamic behaviour of catalytic active sites, and by the non-trivial relationship between calculated reaction energetics and observed rates. In this Perspective, we highlight opportunities to enhance the connection between computation and experiment in electrocatalysis. These include measuring the intrinsic kinetic behaviour of catalysts, creating precise models for the active site and its environment, and forming clear relationships between calculated reaction energetics and observed rates. As experimental and computational methods continue to become more powerful, clear connections between the two will maximize their utility to guide the design of efficient and selective electrocatalysts.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Enhancing the connection between computation and experiments in electrocatalysis.
Fig. 2: Intrinsic activity measurements of electrocatalysts.
Fig. 3: Microkinetic modelling of oxygen reduction.
Fig. 4: Understanding hydrogen evolution in alkaline media using computation and experiments.

References

  1. Thomas, J. M. & Thomas, W. J. Principles and Practice of Heterogeneous Catalysis (John Wiley & Sons, 2014).

  2. Friend, C. M. & Xu, B. Heterogeneous catalysis: a central science for a sustainable future. Acc. Chem. Res. 50, 517–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 6321 (2017).

    Article  Google Scholar 

  4. Nørskov, J. K., Abild-Pedersen, F., Studt, F. & Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl Acad. Sci. USA 108, 937–943 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nørskov, J. K. et al. Universality in heterogeneous catalysis. J. Catal. 209, 275–278 (2002).

    Article  CAS  Google Scholar 

  6. Sutton, J. E., Guo, W., Katsoulakis, M. A. & Vlachos, D. G. Effects of correlated parameters and uncertainty in electronic-structure-based chemical kinetic modelling. Nat. Chem. 8, 331 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article  CAS  Google Scholar 

  8. Hammer, B. & Nørskov, J. K. Electronic factors determining the reactivity of metal surfaces. Surf. Sci. 343, 211–220 (1995).

    Article  CAS  Google Scholar 

  9. Madon, R. J. & Boudart, M. Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind. Eng. Chem. Fundam. 21, 438–447 (1982).

    Article  CAS  Google Scholar 

  10. Boudart, M. Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995).

    Article  CAS  Google Scholar 

  11. Benck, J. D., Hellstern, T. R., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. F. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    Article  CAS  Google Scholar 

  12. Kibsgaard, J. et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ. Sci. 8, 3022–3029 (2015).

    Article  CAS  Google Scholar 

  13. Hansen, J. N. et al. Is there anything better than Pt for HER? ACS Energy Lett. 6, 1175–1180 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kibsgaard, J. & Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 4, 430–433 (2019).

    Article  Google Scholar 

  15. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Resasco, J. & Bell, A. T. Electrocatalytic CO2 reduction to fuels: progress and opportunities. Trends Chem. 2, 825–836 (2020).

    Article  CAS  Google Scholar 

  17. Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    Article  CAS  Google Scholar 

  18. Govindarajan, N., Kastlunger, G., Heenen, H. H. & Chan, K. Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go? Chem. Sci. 13, 14–26 (2022).

    Article  CAS  Google Scholar 

  19. Kas, R. et al. Electrochemical CO2 reduction on nanostructured metal electrodes: fact or defect? Chem. Sci. 11, 1738–1749 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bui, J. C., Kim, C., Weber, A. Z. & Bell, A. T. Dynamic boundary layer simulation of pulsed CO2 electrolysis on a copper catalyst. ACS Energy Lett. 6, 1181–1188 (2021).

    Article  CAS  Google Scholar 

  21. Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Christopher, P. Surface-mediated processes for energy production and conversion: critical considerations in model system design for DFT calculations. ACS Energy Lett. 3, 3015–3016 (2018).

    Article  CAS  Google Scholar 

  23. Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Wellendorff, J. et al. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 640, 36–44 (2015).

    Article  CAS  Google Scholar 

  25. Calle-Vallejo, F., Loffreda, D., Koper, M. T. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Dahl, S. et al. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814 (1999).

    Article  Google Scholar 

  27. Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    Article  CAS  Google Scholar 

  28. Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2, 1937–1938 (2017).

    Article  CAS  Google Scholar 

  29. Avanesian, T. et al. Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551–4558 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Steininger, H., Lehwald, S. & Ibach, H. On the adsorption of CO on Pt(111). Surf. Sci. 123, 264–282 (1982).

    Article  CAS  Google Scholar 

  31. Guo, X. & Yates, J. T. Jr Dependence of effective desorption kinetic parameters on surface coverage and adsorption temperature: CO on Pd(111). J. Chem. Phys. 90, 6761–6766 (1989).

    Article  CAS  Google Scholar 

  32. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  33. Göttle, A. J. & Koper, M. T. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs concerted pathways using DFT. Chem. Sci. 8, 458–465 (2017).

    Article  PubMed  CAS  Google Scholar 

  34. Chan, K. & Nørskov, J. K. Electrochemical barriers made simple. J. Phys. Chem. Lett. 6, 2663–2668 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Chan, K. & Nørskov, J. K. Potential dependence of electrochemical barriers from ab initio calculations. J. Phys. Chem. Lett. 7, 1686–1690 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Akhade, S. A., Bernstein, N. J., Esopi, M. R., Regula, M. J. & Janik, M. J. A simple method to approximate electrode potential-dependent activation energies using density functional theory. Catal. Today 288, 63–73 (2017).

    Article  CAS  Google Scholar 

  37. Li, J., Stenlid, J. H., Ludwig, T., Lamoureux, P. S. & Abild-Pedersen, F. Modeling potential-dependent electrochemical activation barriers: revisiting the alkaline hydrogen evolution reaction. J. Am. Chem. Soc. 143, 19341–19355 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Sundararaman, R., Goddard, W. A. III & Arias, T. A. Grand canonical electronic density-functional theory: algorithms and applications to electrochemistry. J. Chem. Phys. 146, 114104 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  42. Resasco, J., Lum, Y., Clark, E., Zeledon, J. Z. & Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018).

    Article  CAS  Google Scholar 

  43. Huang, Y., Ong, C. W. & Yeo, B. S. Effects of electrolyte anions on the reduction of carbon dioxide to ethylene and ethanol on copper(100) and (111) surfaces. ChemSusChem 11, 3299–3306 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 1–7 (2017).

    Article  CAS  Google Scholar 

  45. McCrum, I. T. & Koper, M. T. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  46. Maheshwari, S., Li, Y., Agrawal, N. & Janik, M. J. Density functional theory models for electrocatalytic reactions. Adv. Catal. 63, 117–167 (2018).

    CAS  Google Scholar 

  47. Ringe, S., Hormann, N. G., Oberhofer, H. & Reuter, K. Implicit solvation methods for catalysis at electrified interfaces. Chem. Rev. https://doi.org/10.1021/acs.chemrev.1c00675 (2021).

  48. Gauthier, J. A. et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 9, 920–931 (2019).

    Article  CAS  Google Scholar 

  49. Marković, N. & Ross, P. Jr Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    Article  Google Scholar 

  50. Scott, S. L. The burden of disproof. ACS Catal. 9, 4706–4708 (2019).

    Article  CAS  Google Scholar 

  51. Baz, A. & Holewinski, A. Predicting macro-kinetic observables in electrocatalysis using the generalized degree of rate control. J. Catal. 397, 233–244 (2021).

    Article  CAS  Google Scholar 

  52. Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Neurock, M., Pallassana, V. & Van Santen, R. A. The importance of transient states at higher coverages in catalytic reactions. J. Am. Chem. Soc. 122, 1150–1153 (2000).

    Article  CAS  Google Scholar 

  55. Akinola, J., Campbell, C. T. & Singh, N. Effects of solvents on adsorption energies: a general bond-additivity model. J. Phys. Chem. C 125, 24371–24380 (2021).

    Article  CAS  Google Scholar 

  56. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, 1529–1536 (2010).

    Article  CAS  Google Scholar 

  57. Marković, N., Grgur, B. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997).

    Article  Google Scholar 

  58. Bond, G. C., Keane, M. A., Kral, H. & Lercher, J. A. Compensation phenomena in heterogeneous catalysis: general principles and a possible explanation. Catal. Rev. 42, 323–383 (2000).

    Article  CAS  Google Scholar 

  59. Bligaard, T. et al. On the compensation effect in heterogeneous catalysis. J. Phys. Chem. B 107, 9325–9331 (2003).

    Article  CAS  Google Scholar 

  60. Jørgensen, M. & Gronbeck, H. Adsorbate entropies with complete potential energy sampling in microkinetic modeling. J. Phys. Chem. C. 121, 7199–7207 (2017).

    Article  CAS  Google Scholar 

  61. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Holewinski, A. & Linic, S. Elementary mechanisms in electrocatalysis: revisiting the ORR Tafel slope. J. Electrochem. Soc. 159, 864–870 (2012).

    Article  CAS  Google Scholar 

  63. Wang, J. X., Uribe, F. A., Springer, T. E., Zhang, J. & Adzic, R. R. Intrinsic kinetic equation for oxygen reduction reaction in acidic media: the double Tafel slope and fuel cell applications. Faraday Discuss. 140, 347–362 (2009).

    Article  Google Scholar 

  64. Fang, Y. H. & Liu, Z. P. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles. ACS Catal. 4, 4364–4376 (2014).

    Article  CAS  Google Scholar 

  65. Limaye, A. M., Zeng, J. S., Willard, A. P. & Manthiram, K. Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis. Nat. Commun. 12, 703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prats, H. & Chan, K. The determination of the HOR/HER reaction mechanism from experimental kinetic data. Phys. Chem. Chem. Phys. 23, 27150–27158 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Motagamwala, A. H. & Dumesic, J. A. Microkinetic modeling: a tool for rational catalyst design. Chem. Rev. 121, 1049–1076 (2020).

    Article  PubMed  CAS  Google Scholar 

  68. Bhandari, S., Rangarajan, S. & Mavrikakis, M. Combining computational modeling with reaction kinetics experiments for elucidating the in situ nature of the active site in catalysis. Acc. Chem. Res. 53, 1893–1904 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Baz, A., Dix, S. T., Holewinski, A. & Linic, S. Microkinetic modeling in electrocatalysis: applications, limitations, and recommendations for reliable mechanistic insights. J. Catal. 404, 864–872 (2021).

    Article  CAS  Google Scholar 

  70. Dix, S. T. & Linic, S. In-operando surface-sensitive probing of electrochemical reactions on nanoparticle electrocatalysts: spectroscopic characterization of reaction intermediates and elementary steps of oxygen reduction reaction on Pt. J. Catal. 396, 32–39 (2021).

    Article  CAS  Google Scholar 

  71. Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17, 675–678 (1949).

    Article  CAS  Google Scholar 

  72. Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  73. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2e and 4e reduction of oxygen on metal surfaces. J. Phys. Chem. C. 118, 6706–6718 (2014).

    Article  CAS  Google Scholar 

  74. Dickens, C. F., Kirk, C. & Nørskov, J. K. Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123, 18960–18977 (2019).

    Article  CAS  Google Scholar 

  75. Rostamikia, G., Mendoza, A. J., Hickner, M. A. & Janik, M. J. First-principles based microkinetic modeling of borohydride oxidation on a Au(111) electrode. J. Power Sources 196, 9228–9237 (2011).

    Article  CAS  Google Scholar 

  76. Stephens, I. E. et al. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying. J. Am. Chem. Soc. 133, 5485–5491 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. 124, 12663–12666 (2012).

    Article  Google Scholar 

  79. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, 1501602 (2016).

    Article  CAS  Google Scholar 

  80. Rossmeisl, J., Chan, K., Skulason, E., Björketun, M. E. & Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal. Today 262, 36–40 (2016).

    Article  CAS  Google Scholar 

  81. Jaramillo, T. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Kibsgaard, J. & Jaramillo, T. Molybdenum phosphosulfide: an active, acid-stable, Earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433–14437 (2014).

    Article  CAS  Google Scholar 

  83. Hellstern, T. R., Benck, J. D., Kibsgaard, J., Hahn, C. & Jaramillo, T. Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Adv. Energy Mater. 6, 1501758 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.R. acknowledges support from the Welch Foundation through grant no. F-1436. F.A.-P., Z.B. and T.F.J. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, Catalysis Science Program to the SUNCAT Center for Interface Science and Catalysis. C.H. contributed under the auspices of the US Department of Energy under contract DE-AC52-07-NA27344, and was supported by the LLNL-LDRD programme under project no. 22-LW-033. The authors acknowledge P. Christopher and D. E. Resasco for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.R. wrote the article and all the authors contributed to the discussion, reviewing and editing of the manuscript.

Corresponding author

Correspondence to Joaquin Resasco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Rodrigo García-Muelas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Resasco, J., Abild-Pedersen, F., Hahn, C. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat Catal 5, 374–381 (2022). https://doi.org/10.1038/s41929-022-00789-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00789-0

This article is cited by

  • Water electrolysis

    • Arthur J. Shih
    • Mariana C. O. Monteiro
    • Marc T. M. Koper

    Nature Reviews Methods Primers (2022)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing