Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems

Abstract

The oxygen reduction reaction (ORR) is an electrochemical process of the utmost importance in energy conversion and storage, corrosion and chemical technologies. The ORR plays a major role in biological processes (such as respiratory biochemical chain reactions) and is being incorporated into numerous bioelectrochemical devices and systems, such as microbial and enzymatic fuel cells, microbiosynthesis processes, water desalination and purification technologies and biosensing. Researchers from various backgrounds have come together to address the specifics of the ORR in close-to-neutral environments in light of their possible integration with bioprocesses. Understanding the ORR mechanism in this pH region is complex, as it involves biotic (living systems or components derived thereof) and abiotic (often inorganic materials or composite) catalysts. This review offers a summary of catalyst-class-dependent ORR mechanisms and pathways with the corresponding limitations relevant to their practical use in bioelectrocatalytic systems. We also analyse the technological challenges often caused by the use of oxygen depolarization as the main driving force in practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ET mechanism in aqueous media for inorganic electrocatalysts.
Fig. 2: Type of inorganic electrocatalysts and their electrochemical performance.
Fig. 3: ET mechanism in MCOs.
Fig. 4: Parameters that affect the ORR biocathode.
Fig. 5: Oxygen transport phenomena within the cathode architecture.
Fig. 6: Key performance parameters of biotic and abiotic electrocatalysts.

Similar content being viewed by others

References

  1. Kinoshita, K. Electrochemical Oxygen Technology Vol. 30 (John Wiley & Sons, 1992).

  2. Bard, A. J. & Faulkner, L. R. Fundamentals and applications. Electrochem. Methods 2, 580–632 (2001).

    Google Scholar 

  3. Santoro, C., Serov, A., Artyushkova, K. & Atanassov, P. Platinum group metal-free oxygen reduction electrocatalysts employed in neutral electrolytes for bio-electrochemical reactors applications. Curr. Opin. Electrochem. 23, 106–113 (2020).

    Article  CAS  Google Scholar 

  4. Erable, B., Féron, D. & Bergel, A. Microbial catalysis of the oxygen reduction reaction for microbial fuel cells: a review. ChemSusChem 5, 975–987 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Mano, N. & de Poulpiquet, A. O2 reduction in enzymatic biofuel cells. Chem. Rev. 118, 2392–2468 (2017).

    Article  PubMed  CAS  Google Scholar 

  6. Chen et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem. Rev. 120, 12903–12993 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Asset, T. & Atanassov, P. Iron–nitrogen–carbon catalysts for proton exchange membrane fuel cells. Joule 4, 33–44 (2020).

    Article  CAS  Google Scholar 

  8. Ramaswamy, N. & Mukerjee, S. Alkaline anion-exchange membrane fuel cells: challenges in electrocatalysis and interfacial charge transfer. Chem. Rev. 119, 11945–11979 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ramaswamy, N. & Mukerjee, S. Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media. Adv. Phys. Chem. 2012, 491604 (2012). Understanding the electron transfer mechanism in acid and alkaline environments.

    Article  CAS  Google Scholar 

  10. Liu, Y. & Atanassov, P. Charge transfer at biotic/abiotic interfaces in biological electrocatalysis. Curr. Opin. Electrochem. 19, 175–183 (2020).

    Article  CAS  Google Scholar 

  11. Yuan, H., Hou, Y., Abu-Reesh, I. M., Chen, J. & He, Z. Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: a review. Mater. Horiz. 3, 382–401 (2016).

    Article  CAS  Google Scholar 

  12. Watson, V. J., Nieto Delgado, C. & Logan, B. E. Influence of chemical and physical properties of activated carbon powders on oxygen reduction and microbial fuel cell performance. Environ. Sci. Technol. 47, 6704–6710 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Martinez, U. et al. Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems. Sci. Adv. 2, e1501178 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Costa de Oliveira, M. A., D’Epifanio, A., Ohnuki, H. & Mecheri, B. Platinum group metal-free catalysts for oxygen reduction reaction: applications in microbial fuel Cells. Catalysts 10, 475 (2020).

    Article  CAS  Google Scholar 

  15. Solomon, E. I. & Stahl, S. S. Introduction: oxygen reduction and activation in catalysis. Chem. Rev. 118, 2299–2301 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Malko, D., Kucernak, A. & Lopes, T. In situ electrochemical quantification of active sites in Fe–N/C non-precious metal catalysts. Nat. Commun. 7, 13285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rojas-Carbonell, S. et al. Effect of pH on the activity of platinum group metal-free catalysts in oxygen reduction reaction. ACS Catal. 8, 3041–3053 (2018). Identification of the mechanism switch in Fe–N–C electrocatalysts.

    Article  CAS  Google Scholar 

  18. Popat, S. C., Ki, D., Rittmann, B. E. & Torres, C. I. Importance of OH transport from cathodes in microbial fuel cells. ChemSusChem 5, 1071–1079 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J., Cheng, S., Li, P., Huang, H. & Cen, K. Sensitivity to oxygen in microbial electrochemical systems biofilms. iScience 13, 163–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, H., Dong, F. & Minteer, S. D. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat. Catal. 3, 225–244 (2020).

    Article  Google Scholar 

  21. Santoro, C., Arbizzani, C., Erable, B. & Ieropoulos, I. Microbial fuel cells: from fundamentals to applications. A review. J. Power Sources 356, 225–244 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O Simoska, O. et al. Recent trends and advances in microbial electrochemical sensing technologies: an overview. Curr. Opin. Electrochem. 30, 100762 (2021).

    Article  CAS  Google Scholar 

  23. Ruff, A., Conzuelo, F. & Schuhmann, W. Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nat. Catal. 3, 214–224 (2020).

    Article  CAS  Google Scholar 

  24. Wang, X. X., Swihart, M. T. & Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2, 578–589 (2019).

    Article  CAS  Google Scholar 

  25. Meier, J. C. et al. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 5, 44–67 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yao Nie, Y., Li, L. & Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44, 2168–2201 (2015).

    Article  PubMed  Google Scholar 

  27. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  28. Sharma, M. et al. Electrode material properties for designing effective microbial electrosynthesis systems. J. Mater. Chem. A 7, 24420–24436 (2019).

    Article  CAS  Google Scholar 

  29. Wang, Z., Cao, C., Zheng, Y., Chen, S. & Zhao, F. Abiotic oxygen reduction reaction catalysts used in microbial fuel cells. ChemElectroChem 1, 1813–1821 (2014).

    Article  CAS  Google Scholar 

  30. Minteer, S., Atanassov, P., Luckarift, H. & Johnson, G. New materials for biological fuel cells. Mater. Today 15, 166–173 (2012).

    Article  CAS  Google Scholar 

  31. Kodali, M., Santoro, C., Herrera, S., Serov, A. & Atanassov, P. Bimetallic platinum group metal-free catalysts for high power generating microbial fuel cells. J. Power Sources 366, 18–26 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou, Y., Chen, G. & Zhang, J. A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide. J. Mater. Chem. A 8, 20849–20869 (2020).

    Article  CAS  Google Scholar 

  33. Lien, H.-T. et al. Probing the active site in single-atom oxygen reduction catalysts via operando X-ray and electrochemical spectroscopy. Nat. Commun. 11, 4233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Artyushkova, K., Serov, A., Rojas-Carbonell, S. & Atanassov, P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal–nitrogen–carbon electrocatalysts. J. Phys. Chem. C 119, 25917–25928 (2015).

    Article  CAS  Google Scholar 

  35. & Zitolo, A. et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015). Identification of the active sites in Fe–N–C electrocatalysts.

    Article  CAS  PubMed  Google Scholar 

  36. Zitolo, A. et al. Identification of catalytic sites in cobalt–nitrogen–carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tylus, U. et al. Elucidating oxygen reduction active sites in pyrolyzed metal–nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 118, 8999–9008 (2014).

    Article  CAS  Google Scholar 

  38. Jia, Q. et al. Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy 29, 65–82 (2016).

    Article  CAS  Google Scholar 

  39. Kodali, M. et al. High performance platinum group metal-free cathode catalysts for microbial fuel cell (MFC). J. Electrochem. Soc. 164, H3041–H3046 (2017).

    Article  CAS  Google Scholar 

  40. Santoro, C. et al. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance. J. Power Sources 375, 11–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kodali et al. Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochim. Acta 265, 56–64 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strelko, V. V., Kuts, V. S. & Thrower, P. A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 38, 1499–1503 (2000).

    Article  CAS  Google Scholar 

  43. Martinez, U. et al. Fe–N–C catalysts: progress in the development of Fe‐based PGM‐free electrocatalysts for the oxygen reduction reaction. Adv. Mater. 31, 1970224 (2019).

    Article  CAS  Google Scholar 

  44. Santoro, C. et al. A family of Fe–NC oxygen reduction electrocatalysts for microbial fuel cell (MFC) application: relationships between surface chemistry and performances. Appl. Catal. B 205, 24–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rojas-Carbonell, S., Santoro, C., Serov, A. & Atanassov, P. Transition metal–nitrogen–carbon catalysts for oxygen reduction reaction in neutral electrolyte. Electrochem. Commun. 75, 38–42 (2017).

    Article  CAS  Google Scholar 

  46. Ficca, V. et al. Effect of active sites poisoning on Fe–N–C ORR platinum group metal‐free catalysts operating in neutral media: a rotating disk electrode study. ChemElectroChem 7, 3044–3055 (2020).

    Article  CAS  Google Scholar 

  47. Malko, D., Kucernak, A. & Lopes, T. Performance of Fe–N/C oxygen reduction electrocatalysts toward NO2, NO, and NH2OH electroreduction: from fundamental insights into the active center to a new method for environmental nitrite destruction. J. Am. Chem. Soc. 138, 16056–16068 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Chung, M. W., Chon, G., Kim, H., Jaouen, F. & Choi, C. H. Electrochemical evidence for two sub‐families of FeNxCy moieties with concentration‐dependent cyanide poisoning. ChemElectroChem 5, 1880–1885 (2018).

    Article  CAS  Google Scholar 

  49. Zhang, X. et al. Long‐term performance of chemically and physically modified activated carbons in air cathodes of microbial fuel cells. ChemElectroChem 1, 1859–1866 (2014).

    Article  CAS  Google Scholar 

  50. Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606 (1996). Review on the electron transfer mechanisms of multicopper oxidases for ORR.

    Article  CAS  PubMed  Google Scholar 

  51. Solomon, E. I., Augustine, A. J. & Yoon, J. O2 reduction to H2O by the multicopper oxidases. Dalton Trans. 30, 3921–3932 (2008).

    Article  CAS  Google Scholar 

  52. Shleev, S. et al. Direct electron transfer between copper-containing proteins and electrodes. Biosens. Bioelectron. 20, 2517–2554 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Calabrese Barton, S., Gallaway, J. & Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004). Practical applications related to enzyme-based ORR.

    Article  CAS  Google Scholar 

  54. Solomon, E. I., Kjaergaard, C. H. & Heppner, D. E. Molecular properties and reaction mechanism of multicopper oxidases related to their use in biofuel cells. Electrochem. Process. Biol. Syst. 7, 169–212 (2015).

    Article  Google Scholar 

  55. Shin, W. et al. Chemical and spectroscopic definition of the peroxide-level intermediate in the multicopper oxidases: relevance to the catalytic mechanism of dioxygen reduction to water. J. Am. Chem. Soc. 118, 3202–3215 (1996).

    Article  CAS  Google Scholar 

  56. Yoon, J., Mirica, L. M., Stack, T. D. P. & Solomon, E. I. Variable-temperature, variable-field magnetic circular dichroism studies of tris-hydroxy-and μ3-oxo-bridged trinuclear Cu(II) complexes: evaluation of proposed structures of the native intermediate of the multicopper oxidases. J. Am. Chem. Soc. 127, 13680–13693 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Yoon, J. et al. The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proc. Natl Acad. Sci. USA 104, 13609–13614 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stines-Chaumeil, C., Roussarie, E. & Mano, N. The nature of the rate-limiting step of blue multicopper oxidases: homogeneous studies versus heterogeneous. Biochim. Open 4, 36–40 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Parimi, N. S., Umasankar, Y., Atanassov, P. & Ramasamy, R. P. Kinetic and mechanistic parameters of laccase catalyzed direct electrochemical oxygen reduction reaction. ACS Catal. 2, 38–44 (2012).

    Article  CAS  Google Scholar 

  60. Pankratov, D., Sotres, J., Barrantes, A., Arnebrant, T. & Shleev, S. Interfacial behavior and activity of laccase and bilirubin oxidase on bare gold surfaces. Langmuir 30, 2943–2951 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Dos Santos, L., Climent, V., Blanford, C. F. & Armstrong, F. A. Mechanistic studies of the ‘blue’ Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 12, 13962–13974 (2010).

    Article  PubMed  CAS  Google Scholar 

  62. Lee, S.-K. et al. Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J. Am. Chem. Soc. 124, 6180–6193 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Dagys, M. et al. Oxygen electroreduction catalysed by laccase wired to gold nanoparticles via the trinuclear copper cluster. Energy Environ. Sci. 10, 498–502 (2017).

    Article  CAS  Google Scholar 

  64. Gallaway, J. W. & Barton, S. A. C. Effect of redox polymer synthesis on the performance of a mediated laccase oxygen cathode. J. Electroanal. Chem. 626, 149–155 (2009).

    Article  CAS  Google Scholar 

  65. Singh, P. et al. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 38, 2214–2230 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Bollella, P. & Gorton, L. Enzyme based amperometric biosensors. Curr. Opin. Electrochem. 10, 157–173 (2018).

    Article  CAS  Google Scholar 

  67. Bellare, M., Kadambar, V. K., Bollella, P., Katz, E. & Melman, A. Electrochemically stimulated molecule release associated with interfacial pH changes. Chem. Commun. 55, 7856–7859 (2019).

    Article  CAS  Google Scholar 

  68. Bollella, P., Lee, I., Blaauw, D. & Katz, E. A microelectronic sensor device powered by a small implantable biofuel cell. ChemPhysChem 21, 120–128 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Bollella, P. et al. A glucose/oxygen enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sens. Actuators B 256, 921–930 (2018).

    Article  CAS  Google Scholar 

  70. Calitri, G. et al. Evaluation of different storage processes of passion fruit (Passiflora edulis Sims) using a new dual biosensor platform based on a conducting polymer. Microchem. J. 154, 104573 (2020).

    Article  CAS  Google Scholar 

  71. Bollella, P., Melman, A. & Katz, E. Electrochemically generated interfacial pH change—application to signal‐triggered molecule release. ChemElectroChem 7, 3386–2403 (2020).

    Article  CAS  Google Scholar 

  72. Masi, M., Bollella, P. & Katz, E. DNA release from a modified electrode triggered by a bioelectrocatalytic process. ACS Appl. Mater. Interfaces 11, 47625–47634 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Bellare, M., Kadambar, V. K., Bollella, P., Katz, E. & Melman, A. Molecular release associated with interfacial pH change stimulated by a small electrical potential applied. ChemElectroChem 7, 59–63 (2020).

    Article  CAS  Google Scholar 

  74. Scotto, V., Di Cintio, R. & Marcenaro, G. The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corros. Sci. 25, 185–194 (1985).

    Article  CAS  Google Scholar 

  75. Bergel, A., Féron, D. & Mollica, A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun. 7, 900–904 (2005). ORR electrocatalysis using seawater biofilm.

    Article  CAS  Google Scholar 

  76. Guo, K., Prévoteau, A., Patil, S. A. & Rabaey, K. Engineering electrodes for microbial electrocatalysis. Curr. Opin. Biotechnol. 33, 149–156 (2015). Review of electrode features for optimal electroactive biofilm development.

    Article  CAS  PubMed  Google Scholar 

  77. Rosenbaum, M., Aulenta, F., Villano, M. & Angenent, L. T. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour. Technol. 102, 324–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Jiang, Y. & Zeng, R. J. Bidirectional extracellular electron transfers of electrode–biofilm: mechanism and application. Bioresour. Technol. 271, 439–448 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. He, Z. & Angenent, L. T. Application of bacterial biocathodes in microbial fuel cells. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 18, 2009–2015 (2006).

    CAS  Google Scholar 

  80. Freguia, S., Tsujimura, S. & Kano, K. Electron transfer pathways in microbial oxygen biocathodes. Electrochim. Acta 55, 813–818 (2010). Electron transfer mechanisms that occur in an electroactive biofilm during ORR.

    Article  CAS  Google Scholar 

  81. Xu, F., Duan, J. & Hou, B. Electron transfer process from marine biofilms to graphite electrodes in seawater. Bioelectrochemistry 78, 92–95 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Cristiani, P. et al. Cathodic and anodic biofilms in single chamber microbial fuel cells. Bioelectrochemistry 92, 6–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Strycharz-Glaven, S. M. et al. Electrochemical investigation of a microbial solar cell reveals a nonphotosynthetic biocathode catalyst. Appl. Environ. Microbiol. 79, 3933–3942 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blanchet, E., Pécastaings, S., Erable, B., Roques, C. & Bergel, A. Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes. Bioresour. Technol. 173, 224–230 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Li, W. et al. Simultaneous pH self-neutralization and bioelectricity generation in a dual bioelectrode microbial fuel cell under periodic reversion of polarity. J. Power Sources 268, 287–293 (2014).

    Article  CAS  Google Scholar 

  86. Rimboud, M., Desmond-Le Quemener, E., Erable, B., Bouchez, T. & Bergel, A. The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community. Bioelectrochemistry 102, 42–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Desmond-Le Quéméner, E. et al. Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes. Bioresour. Technol. 214, 55–62 (2016).

    Article  PubMed  CAS  Google Scholar 

  88. Rimboud, M., Bergel, A. & Erable, B. Multiple electron transfer systems in oxygen reducing biocathodes revealed by different conditions of aeration/agitation. Bioelectrochemistry 110, 46–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Erable, B. et al. Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry 78, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Rimboud, M., Barakat, M., Bergel, A. & Erable, B. Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics. Bioelectrochemistry 116, 24–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Milner, E. M. & Yu, E. H. The effect of oxygen mass transfer on aerobic biocathode performance, biofilm growth and distribution in microbial fuel cells. Fuel Cells 18, 4–12 (2018).

    Article  CAS  Google Scholar 

  92. Huang, L., Regan, J. M. & Quan, X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour. Technol. 102, 316–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Erable, B. et al. Marine floating microbial fuel cell involving aerobic biofilm on stainless steel cathodes. Bioresour. Technol. 142, 510–516 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Xia, X. et al. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells. Environ. Sci. Technol. 47, 2085–2091 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Marzorati, S., Cristiani, P., Longhi, M., Trasatti, S. P. & Traversa, E. Nanoceria acting as oxygen reservoir for biocathodes in microbial fuel cells. Electrochim. Acta 325, 134954 (2019).

    Article  CAS  Google Scholar 

  96. Erable, B. & Bergel, A. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm. Bioresour. Technol. 100, 3302–3307 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Santoro, C. et al. The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67, 128–139 (2014).

    Article  CAS  Google Scholar 

  98. Miao, Z. et al. Atomically dispersed Fe–Nx/C electrocatalyst boosts oxygen catalysis via a new metal–organic polymer supramolecule strategy. Adv. Energy Mater. 8, 1801226 (2018).

    Article  CAS  Google Scholar 

  99. Farahani, F. S. et al. MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes. J. Power Sources 390, 45–53 (2018).

    Article  CAS  Google Scholar 

  100. Sanchez, D. V. et al. Changes in carbon electrode morphology affect microbial fuel cell performance with Shewanella oneidensis MR-1. Energies 8, 1817–1829 (2015).

    Article  CAS  Google Scholar 

  101. Wang, Z., Mahadevan, G. D., Wu, Y. & Zhao, F. Progress of air-breathing cathode in microbial fuel cells. J. Power Sources 356, 245–255 (2017).

    Article  CAS  Google Scholar 

  102. Zhang, F., Cheng, S., Pant, D., Van Bogaert, G. & Logan, B. E. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochem. Commun. 11, 2177–2179 (2009).

    Article  CAS  Google Scholar 

  103. Harnisch, F. & Schröder, U. From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem. Soc. Rev. 39, 4433–44448 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Debuy, S., Pecastaings, S., Bergel, A. & Erable, B. Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms. Int. Biodeterior. Biodegrad. 103, 16–22 (2015).

    Article  CAS  Google Scholar 

  105. Luckarift, H. R. et al. Standardized microbial fuel cell anodes of silica-immobilized Shewanella oneidensis. Chem. Commun. 46, 6048–6050 (2010).

    Article  CAS  Google Scholar 

  106. Rossi, R. et al. Evaluating a multi-panel air cathode through electrochemical and biotic tests. Water Res. 148, 51–59 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Hiegemann, H. et al. Performance and inorganic fouling of a submergible 255 L prototype microbial fuel cell module during continuous long-term operation with real municipal wastewater under practical conditions. Bioresour. Technol. 294, 122227 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.S. acknowledges support from the Italian Ministry of Education, Universities and Research (Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR)) through the ‘Rita Levi Montalcini 2018’ Fellowship (grant no. PGR18MAZLI). Support from the Italian Ministry of University and Research (MIUR) through grant ‘Dipartimenti di Eccellenza-2017—Materials for energy’ (2018-NAZ-0115) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.S., P.B. and B.E. conducted the literature search and wrote the manuscript. P.A. and D.P. supervised the study and wrote the manuscript. All the authors contributed to the responses of the reviewers.

Corresponding author

Correspondence to Deepak Pant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Lior Elbaz, Chaozhong Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1 and 2.

Source data

Source Data Fig. 1

Data source related to pH mechanism.

Source Data Fig. 2

Data source related to peak of power density.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santoro, C., Bollella, P., Erable, B. et al. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat Catal 5, 473–484 (2022). https://doi.org/10.1038/s41929-022-00787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00787-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research