Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts

Abstract

Cost-competitive fuel cells and water electrolysers require highly efficient electrocatalysts for the respective reactions of hydrogen oxidation and evolution, and oxygen evolution and reduction. Electrocatalyst activity and durability are commonly assessed using rotating disk electrodes (RDEs) or membrane electrode assemblies (MEAs). RDEs provide a quick and widely accessible testing tool, whereas MEA testing is more complex but closely resembles the actual application. Although both experimental set-ups allow investigation of the same reactions, there are scientific questions that cannot be answered by the RDE technique. In this Perspective, we scrutinize protocols widely used to determine the activity and durability of electrocatalysts, and highlight discrepancies in the results obtained using RDEs and MEAs. We discuss where the use of RDEs is appropriate and, conversely, where it leads to erroneous interpretations. Ultimately, we show that many of the current challenges for hydrogen and oxygen electrocatalysts require MEA testing and advocate for its greater adoption in the early stages of electrocatalyst development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the RDE and five-layer MEA set-ups.
Fig. 2: Limited mass transport rates restricting RDE-based HOR/HER measurements of the Nernstian diffusion overpotential.
Fig. 3: Structural influences on ORR catalyst activity and MEA performance.

Similar content being viewed by others

References

  1. Buttler, A. & Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew. Sustain. Energy Rev. 82, 2440–2454 (2018).

    Article  CAS  Google Scholar 

  2. Fan, J. et al. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 6, 475–486 (2021).

    Article  CAS  Google Scholar 

  3. Kodama, K., Nagai, T., Kuwaki, A., Jinnouchi, R. & Morimoto, Y. Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nat. Nanotechnol. 16, 140–147 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Shinozaki, K., Zack, J. W., Richards, R. M., Pivovar, B. S. & Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 162, F1144–F1158 (2015).

    Article  CAS  Google Scholar 

  5. Gasteiger, H. A., Panels, J. E. & Yan, S. G. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 127, 162–171 (2004).

    Article  CAS  Google Scholar 

  6. Schmidt, T. J. et al. Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration. J. Electrochem. Soc. 145, 2354–2358 (1998).

    Article  CAS  Google Scholar 

  7. Wakabayashi, N., Takeichi, M., Itagaki, M., Uchida, H. & Watanabe, M. Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J. Electroanal. Chem. 574, 339–346 (2005).

    Article  CAS  Google Scholar 

  8. Schröder, J. et al. The gas diffusion electrode setup as straightforward testing device for proton exchange membrane water electrolyzer catalysts. JACS Au 1, 247–251 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ehelebe, K. et al. Evaluating electrocatalysts at relevant currents in a half-cell: the impact of Pt loading on oxygen reduction reaction. J. Electrochem. Soc. 166, F1259–F1268 (2019).

    Article  CAS  Google Scholar 

  10. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    Article  CAS  Google Scholar 

  11. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications Vol. 2 (Wiley, 2001).

  12. Garsany, Y., Ge, J., St-Pierre, J., Rocheleau, R. & Swider-Lyons, K. E. Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J. Electrochem. Soc. 161, F628–F640 (2014).

    Article  CAS  Google Scholar 

  13. Kocha, S. S. et al. Best practices and testing protocols for benchmarking ORR activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatalysis 8, 366–374 (2017).

    Article  CAS  Google Scholar 

  14. Fathi Tovini, M., Hartig-Weiß, A., Gasteiger, H. A. & El-Sayed, H. A. The discrepancy in oxygen evolution reaction catalyst lifetime explained: RDE vs MEA - dynamicity within the catalyst layer matters. J. Electrochem. Soc. 168, 014512 (2021).

    Article  CAS  Google Scholar 

  15. Pan, L., Ott, S., Dionigi, F. & Strasser, P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr. Opin. Electrochem. 18, 61–71 (2019).

    Article  CAS  Google Scholar 

  16. Jiang, J. & Kucernak, A. Investigations of fuel cell reactions at the composite microelectrode|solid polymer electrolyte interface. I. Hydrogen oxidation at the nanostructured Pt|Nafion® membrane interface. J. Electroanal. Chem. 567, 123–137 (2004).

    Article  CAS  Google Scholar 

  17. Chen, S. & Kucernak, A. Electrocatalysis under conditions of high mass transport rate: oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J. Phys. Chem. B 108, 3262–3276 (2004).

    Article  CAS  Google Scholar 

  18. Zalitis, C. M., Kramer, D. & Kucernak, A. R. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys. Chem. Chem. Phys. 15, 4329–4340 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Petzoldt, P. J., Kwan, J. T. H., Bonakdarpour, A. & Wilkinson, D. P. Deconvoluting reversible and irreversible degradation phenomena in OER catalyst coated membranes using a modified RDE technique. J. Electrochem. Soc. 168, 026507 (2021).

    Article  CAS  Google Scholar 

  20. Martens, S. et al. A comparison of rotating disc electrode, floating electrode technique and membrane electrode assembly measurements for catalyst testing. J. Power Sources 392, 274–284 (2018).

    Article  CAS  Google Scholar 

  21. Katsounaros, I. et al. The effective surface pH during reactions at the solid–liquid interface. Electrochem. Commun. 13, 634–637 (2011).

    Article  CAS  Google Scholar 

  22. Okada, T., Møller-Holst, S., Gorseth, O. & Kjelstrup, S. Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. J. Electroanal. Chem. 442, 137–145 (1998).

    Article  CAS  Google Scholar 

  23. Ito, H., Maeda, T., Nakano, A. & Takenaka, H. Properties of Nafion membranes under PEM water electrolysis conditions. Int. J. Hydrogen Energy 36, 10527–10540 (2011).

    Article  CAS  Google Scholar 

  24. Ehelebe, K., Escalera-López, D. & Cherevko, S. Limitations of aqueous model systems in the stability assessment of electrocatalysts for oxygen reactions in fuel cell and electrolyzers. Curr. Opin. Electrochem. 29, 100832 (2021).

    Article  CAS  Google Scholar 

  25. Cheng, X. et al. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J. Power Sources 165, 739–756 (2007).

    Article  CAS  Google Scholar 

  26. Greszler, T. A., Moylan, T. E. & Gasteiger, H. A. in Handbook of Fuel Cells: Fundamentals, Technology and Applications Vol. 6: Advances in Electrocatalysis, Materials, Diagnostics and Durability (eds Vielstich, W. et al.) 729–748 (Wiley, 2009).

  27. Papadias, D. D. et al. Durability of Pt–Co alloy polymer electrolyte fuel cell cathode catalysts under accelerated stress tests. J. Electrochem. Soc. 165, F3166–F3177 (2018).

    Article  CAS  Google Scholar 

  28. Ahluwalia, R. K. et al. Durability of de-alloyed platinum-nickel cathode catalyst in low platinum loading membrane-electrode assemblies subjected to accelerated stress tests. J. Electrochem. Soc. 165, F3316–F3327 (2018).

    Article  CAS  Google Scholar 

  29. Durst, J., Chatenet, M. & Maillard, F. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces. Phys. Chem. Chem. Phys. 14, 13000–13009 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Jovanovič, P. et al. New insight into platinum dissolution from nanoparticulate platinum-based electrocatalysts using highly sensitive in situ concentration measurements. ChemCatChem 6, 449–453 (2014).

    Article  CAS  Google Scholar 

  31. Ayers, K. et al. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annu. Rev. Chem. Biomol. Eng. 10, 219–239 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Ohno, H. et al. Remarkable mass activities for the oxygen evolution reaction at iridium oxide nanocatalysts dispersed on tin oxides for polymer electrolyte membrane water electrolysis. J. Electrochem. Soc. 164, F944–F947 (2017).

    Article  CAS  Google Scholar 

  33. Hartig-Weiss, A. et al. Iridium oxide catalyst supported on antimony-doped tin oxide for high oxygen evolution reaction activity in acidic media. ACS Appl. Nano Mater. 3, 2185–2196 (2020).

    Article  CAS  Google Scholar 

  34. Alia, S. M. & Anderson, G. C. Iridium oxygen evolution activity and durability baselines in rotating disk electrode half-cells. J. Electrochem. Soc. 166, F282–F294 (2019).

    Article  CAS  Google Scholar 

  35. Bernt, M. et al. Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech. 92, 31–39 (2020).

    Article  CAS  Google Scholar 

  36. Oakton, E. et al. IrO2–TiO2: a high-surface-area, active, and stable electrocatalyst for the oxygen evolution reaction. ACS Catal. 7, 2346–2352 (2017).

    Article  CAS  Google Scholar 

  37. Bernt, M. et al. Effect of the IrOx conductivity on the anode electrode/porous transport layer interfacial resistance in PEM water electrolyzers. J. Electrochem. Soc. 168, 084513 (2021).

    Article  CAS  Google Scholar 

  38. Geiger, S. et al. Catalyst stability benchmarking for the oxygen evolution reaction: the importance of backing electrode material and dissolution in accelerated aging studies. ChemSusChem 10, 4140–4143 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Oh, H.-S. et al. Electrochemical catalyst–support effects and their stabilizing role for IrOx nanoparticle catalysts during the oxygen evolution reaction. J. Am. Chem. Soc. 138, 12552–12563 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. El-Sayed, H. A., Weiß, A., Olbrich, L. F., Putro, G. P. & Gasteiger, H. A. OER catalyst stability investigation using RDE technique: a stability measure or an artifact? J. Electrochem. Soc. 166, F458–F464 (2019).

    Article  CAS  Google Scholar 

  41. Knöppel, J. et al. On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells. Nat. Commun. 12, 2231 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hartig-Weiss, A., Tovini, M. F., Gasteiger, H. A. & El-Sayed, H. A. OER catalyst durability tests using the rotating disk electrode technique: the reason why this leads to erroneous conclusions. ACS Appl. Energy Mater. 3, 10323–10327 (2020).

    Article  CAS  Google Scholar 

  43. Tan, X., Shen, J., Semagina, N. & Secanell, M. Decoupling structure-sensitive deactivation mechanisms of Ir/IrOx electrocatalysts toward oxygen evolution reaction. J. Catal. 371, 57–70 (2019).

    Article  CAS  Google Scholar 

  44. Zalitis, C. M., Sharman, J., Wright, E. & Kucernak, A. R. Properties of the hydrogen oxidation reaction on Pt/C catalysts at optimised high mass transport conditions and its relevance to the anode reaction in PEFCs and cathode reactions in electrolysers. Electrochim. Acta 176, 763–776 (2015).

    Article  CAS  Google Scholar 

  45. Durst, J., Simon, C., Hasché, F. & Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162, F190–F203 (2015).

    Article  CAS  Google Scholar 

  46. Bernt, M., Siebel, A. & Gasteiger, H. A. Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings. J. Electrochem. Soc. 165, F305–F314 (2018).

    Article  CAS  Google Scholar 

  47. Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529 (2010).

    Article  CAS  Google Scholar 

  48. Genorio, B. et al. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules. Nat. Mater. 9, 998–1003 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, J., Yan, Y. & Xu, B. Correcting the hydrogen diffusion limitation in rotating disk electrode measurements of hydrogen evolution reaction kinetics. J. Electrochem. Soc. 162, F1470–F1481 (2015).

    Article  CAS  Google Scholar 

  50. Chen, Q. & Luo, L. Correlation between gas bubble formation and hydrogen evolution reaction kinetics at nanoelectrodes. Langmuir 34, 4554–4559 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Saibi, R., Punathil Meethal, R. & Srinivasan, R. Mechanistic analysis of hydrogen evolution reaction on Pt in HClO4 using inverted rotating disc electrode. Electroanalysis 32, 2545–2554 (2020).

    Article  CAS  Google Scholar 

  52. Elbert, K. et al. Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catal. 5, 6764–6772 (2015).

    Article  CAS  Google Scholar 

  53. Rheinländer, P. J., Herranz, J., Durst, J. & Gasteiger, H. A. Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J. Electrochem. Soc. 161, F1448–F1457 (2014).

    Article  CAS  Google Scholar 

  54. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Stühmeier, B. M., Pietsch, M. R., Schwämmlein, J. N. & Gasteiger, H. A. Pressure and temperature dependence of the hydrogen oxidation and evolution reaction kinetics on Pt electrocatalysts via PEMFC-based hydrogen-pump measurements. J. Electrochem. Soc. 168, 064516 (2021).

    Article  CAS  Google Scholar 

  56. Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan—3.4 Fuel Cells (US Department of Energy, 2017); https://www.energy.gov/eere/fuelcells/downloads/hydrogen-and-fuel-cell-technologies-office-multi-year-research-development

  57. Asset, T. et al. A review on recent developments and prospects for the oxygen reduction reaction on hollow Pt-alloy nanoparticles. ChemPhysChem 19, 1552–1567 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Zaman, S. et al. Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 60, 2–23 (2021).

    Article  CAS  Google Scholar 

  59. Ly, A., Asset, T. & Atanassov, P. Integrating nanostructured Pt-based electrocatalysts in proton exchange membrane fuel cells. J. Power Sources 478, 228516 (2020).

    Article  CAS  Google Scholar 

  60. Inaba, M. et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: measurement of oxygen reduction activities under realistic conditions. Energy Environ. Sci. 11, 988–994 (2018).

    Article  CAS  Google Scholar 

  61. Mayrhofer, K. J. J. et al. Fuel cell catalyst degradation on the nanoscale. Electrochem. Commun. 10, 1144–1147 (2008).

    Article  CAS  Google Scholar 

  62. Meier, J. C. et al. Stability investigations of electrocatalysts on the nanoscale. Energy Environ. Sci. 5, 9319–9330 (2012).

    Article  CAS  Google Scholar 

  63. Hu, Y. et al. Revealing the genuine stability of the reference Pt/C electrocatalyst toward the ORR. Electrochim. Acta 391, 138963 (2021).

    Article  CAS  Google Scholar 

  64. Stariha, S. et al. Recent advances in catalyst accelerated stress tests for polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 165, F492–F501 (2018).

    Article  CAS  Google Scholar 

  65. Riese, A., Banham, D., Ye, S. & Sun, X. Accelerated stress testing by rotating disk electrode for carbon corrosion in fuel cell catalyst supports. J. Electrochem. Soc. 162, F783–F788 (2015).

    Article  CAS  Google Scholar 

  66. Reiser, C. A. et al. A reverse-current decay mechanism for fuel cells. Electrochem. Solid State Lett. 8, A273–A276 (2005).

    Article  CAS  Google Scholar 

  67. Nagai, T., Murata, H. & Morimoto, Y. Influence of experimental conditions on the catalyst degradation in the durability test. J. Electrochem. Soc. 161, F789–F794 (2014).

    Article  CAS  Google Scholar 

  68. Schröder, J. et al. A new approach to probe the degradation of fuel cell catalysts under realistic conditions: combining tests in a gas diffusion electrode setup with small angle X-ray scattering. J. Electrochem. Soc. 167, 134515 (2020).

    Article  CAS  Google Scholar 

  69. Kneer, A. & Wagner, N. A semi-empirical catalyst degradation model based on voltage cycling under automotive operating conditions in PEM fuel cells. J. Electrochem. Soc. 166, F120–F127 (2019).

    Article  CAS  Google Scholar 

  70. Kongkanand, A. & Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 7, 1127–1137 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Gittleman, C. S., Kongkanand, A., Masten, D. & Gu, W. Materials research and development focus areas for low cost automotive proton-exchange membrane fuel cells. Curr. Opin. Electrochem. 18, 81–89 (2019).

    Article  CAS  Google Scholar 

  72. Baker, D. R., Caulk, D. A., Neyerlin, K. C. & Murphy, M. W. Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J. Electrochem. Soc. 156, B991 (2009).

    Article  CAS  Google Scholar 

  73. Liu, Y. et al. Proton conduction and oxygen reduction kinetics in PEM fuel cell cathodes: effects of ionomer-to-carbon ratio and relative humidity. J. Electrochem. Soc. 156, B970–B980 (2009).

    Article  CAS  Google Scholar 

  74. Harzer, G. S., Orfanidi, A., El-Sayed, H., Madkikar, P. & Gasteiger, H. A. Tailoring catalyst morphology towards high performance for low Pt loaded PEMFC cathodes. J. Electrochem. Soc. 165, F770–F779 (2018).

    Article  CAS  Google Scholar 

  75. Owejan, J. P., Owejan, J. E. & Gu, W. Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 160, F824–F833 (2013).

    Article  CAS  Google Scholar 

  76. Park, Y.-C., Tokiwa, H., Kakinuma, K., Watanabe, M. & Uchida, M. Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J. Power Sources 315, 179–191 (2016).

    Article  CAS  Google Scholar 

  77. Yarlagadda, V. et al. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 3, 618–621 (2018).

    Article  CAS  Google Scholar 

  78. Lazaridis, T. & Gasteiger, H. A. Pt-catalyzed oxidation of PEMFC carbon supports: a path to highly accessible carbon morphologies and implications for start-up/shut-down degradation. J. Electrochem. Soc. 168, 114517 (2021).

    Article  CAS  Google Scholar 

  79. Ramaswamy, N. et al. Editors’ choice—ionomer side chain length and equivalent weight impact on high current density transport resistances in PEMFC cathodes. J. Electrochem. Soc. 168, 024518 (2021).

    Article  CAS  Google Scholar 

  80. Orfanidi, A. et al. The key to high performance low Pt loaded electrodes. J. Electrochem. Soc. 164, F418–F426 (2017).

    Article  CAS  Google Scholar 

  81. Spöri, C., Kwan, J. T. H., Bonakdarpour, A., Wilkinson, D. P. & Strasser, P. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  CAS  Google Scholar 

  82. Ramaswamy, N., Gu, W., Ziegelbauer, J. M. & Kumaraguru, S. Carbon support microstructure impact on high current density transport resistances in PEMFC cathode. J. Electrochem. Soc. 167, 064515 (2020).

Download references

Acknowledgements

T.L. acknowledges funding from the Swiss National Foundation under the funding scheme Sinergia (project grant number 180335). B.M.S. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2089/1–390776260). We thank our colleague P. Rapp for the graphic design of Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized the overall structure of this Perspective. T.L., B.M.S. and H.A.E.-S. co-wrote the manuscript, with T.L. and B.M.S. contributing the discussion of general aspects and the conclusion, H.A.E.-S. focusing on the OER section, B.M.S. drafting the HOR/HER section and T.L. discussing the ORR-specific aspects. All authors provided insights, contributed feedback and edited the manuscript.

Corresponding author

Correspondence to Hany A. El-Sayed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jiujun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaridis, T., Stühmeier, B.M., Gasteiger, H.A. et al. Capabilities and limitations of rotating disk electrodes versus membrane electrode assemblies in the investigation of electrocatalysts. Nat Catal 5, 363–373 (2022). https://doi.org/10.1038/s41929-022-00776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00776-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing