Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes

Abstract

Atom trapping of scarce precious metals onto a suitable support at high temperatures has emerged as an effective approach to build thermally stable single-atom catalysts. Here, following a similar mechanism based on atom trapping through support effects, we demonstrate a reverse atom-trapping strategy to controllably extract strontium atoms from a rigid lanthanum strontium cobalt ferrite ((La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ, LSCF) surface with ease. The lattice oxygen redox activity of LSCF is accordingly fine-tuned, leading to enhanced cathode performance in a solid-oxide fuel cell. An over 30−70% increases in maximum power density of the single cells at intermediate temperatures is achieved by LSCF with surface strontium vacancies compared to the pristine surface. In addition, the strontium-deficient surface excludes strontium segregation and formation of electrochemically inert SrO islands, thus improving the longevity of the cathode. This development can be broadly applicable for modifying structurally stable oxide surfaces, and opens more possibilities of scalable single-atom extraction strategies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Atom trapping versus reverse atom trapping.
Fig. 2: Experimental demonstration and mechanism of reverse atom trapping.
Fig. 3: Atomic-scale imaging of atomic strontium vacancy.
Fig. 4: Structural characterizations of the transition-metal−oxygen bond.
Fig. 5: Cathode performance and theoretical understandings of strontium-deficient LSCF.

Data availability

Atomic coordinates of the optimized computational models are provided as Supplementary Data 1 with this paper. Other data that support the findings of this study can be found in the article and the Supplementary Information; this information is also available from the corresponding author upon request.

References

  1. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    CAS  PubMed  Article  Google Scholar 

  2. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    CAS  PubMed  Article  Google Scholar 

  3. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  PubMed  Article  Google Scholar 

  4. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  PubMed  Article  Google Scholar 

  5. Xiong, H. et al. Thermally stable and regenerable platinum–tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. 56, 8986–8991 (2017).

    CAS  Article  Google Scholar 

  6. Peterson, E. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    CAS  PubMed  Article  Google Scholar 

  7. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    CAS  PubMed  Article  Google Scholar 

  8. Ganzler, A. M. et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem. Int. Ed. 56, 13078–13082 (2017).

    Article  CAS  Google Scholar 

  9. Zhou, P. et al. Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew. Chem. Int. Ed. 58, 14184–14188 (2019).

    CAS  Article  Google Scholar 

  10. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    CAS  PubMed  Article  Google Scholar 

  11. Qu, Y. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018).

    CAS  Article  Google Scholar 

  12. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    CAS  PubMed  Article  Google Scholar 

  13. Jin, S. et al. Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413–415 (1994).

    CAS  PubMed  Article  Google Scholar 

  14. Bednorz, J. G. & Müller, K. A. Possible high TC superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

    CAS  Article  Google Scholar 

  15. Shao, Z. & Haile, S. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    CAS  PubMed  Article  Google Scholar 

  16. Salamon, M. B. & Jaime, M. The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (1988).

    Article  Google Scholar 

  17. Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4844 (2004).

    CAS  PubMed  Article  Google Scholar 

  18. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. Lee, Y.-L., Kleis, J., Rossmeisl, J. & Morgan, D. Ab initio energetics of LaBO3(001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80, 224101 (2009).

    Article  CAS  Google Scholar 

  20. Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    CAS  Article  Google Scholar 

  21. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6, 6097 (2015).

    CAS  PubMed  Article  Google Scholar 

  22. Suntivich, J. et al. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C. 118, 1856–1863 (2014).

    CAS  Article  Google Scholar 

  23. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    CAS  PubMed  Article  Google Scholar 

  24. Hong, W. T. et al. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy. J. Phys. Chem. C. 119, 2063–2072 (2015).

    CAS  Article  Google Scholar 

  25. Peña, M. A. & Fierro, J. L. G. Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001).

    PubMed  Article  CAS  Google Scholar 

  26. Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 14, 477–485 (1926).

    CAS  Article  Google Scholar 

  27. Lee, W., Han, J. W., Chen, Y., Cai, Z. & Yildiz, B. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc. 135, 7909–7925 (2013).

    CAS  PubMed  Article  Google Scholar 

  28. Irvine, J. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016).

    CAS  Article  Google Scholar 

  29. Boldrin, P. & Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2, 571–577 (2019).

    CAS  Article  Google Scholar 

  30. Ding, D., Lai, S. Y., Gerdes, K. & Liu, M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7, 552–575 (2014).

    CAS  Article  Google Scholar 

  31. Smith, D. W. An acidity scale for binary oxides. J. Chem. Educ. 64, 480–481 (1987).

    CAS  Article  Google Scholar 

  32. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Article  Google Scholar 

  33. Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Nicollet, C. et al. Acidity of surface-infiltrated binary oxides as a sensitive descriptor of oxygen exchange kinetics in mixed conducting oxides. Nat. Catal. 3, 913–920 (2020).

    CAS  Article  Google Scholar 

  35. Flood, H. & Förland, T. The acidic and basic properties of oxides. Acta Chem. Scand. 1, 592–604 (1947).

    CAS  PubMed  Article  Google Scholar 

  36. Kostogloudis, G. C. & Ftikos, C. Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3−δ-based perovskite oxides. Solid State Ion. 126, 143–151 (1999).

    CAS  Article  Google Scholar 

  37. Doshi, R., Richard, V. L., Carter, J. D., Wang, X. & Krumpelt, M. Development of solid-oxide fuel cells that operate at 500 °C. J. Electrochem. Soc. 146, 1273–1278 (1999).

    CAS  Article  Google Scholar 

  38. Mineshige, A. et al. Introduction of A-site deficiency into La0.6Sr0.4Co0.2Fe0.8O3−δ and its effect on structure and conductivity. Solid State Ion. 176, 1145–1149 (2005).

    CAS  Article  Google Scholar 

  39. Konysheva, E. Y., Xu, X. & Irvine, J. T. S. On the existence of A-site deficiency in perovskites and its relation to the electrochemical performance. Adv. Mater. 24, 528–532 (2012).

    CAS  PubMed  Article  Google Scholar 

  40. de Castro, I. A. et al. Molybdenum oxides—from fundamentals to functionality. Adv. Mater. 29, 1701619 (2017).

    Article  CAS  Google Scholar 

  41. Zhukovskii, V. M., Yanushkevich, T. M. & Tel’nykh, T. F. Fazovaya diagramma sistemy MoO3–SrO. Zh. Neorg. Khim. 17, 2827–2830 (1972).

    CAS  Google Scholar 

  42. Zhang, Y. et al. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 591, 246–251 (2021).

    CAS  PubMed  Article  Google Scholar 

  43. Opitz, A. K. et al. The chemical evolution of the La0.6Sr0.4CoO3−δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity. Top. Catal. 61, 2129–2141 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    CAS  Article  Google Scholar 

  45. Lee, K. T. & Manthiram, A. Characterization of Nd0.6Sr0.4Co1−yFeyO3−δ (0 ≤ y ≤ 0.5) cathode materials for intermediate temperature solid oxide fuel cells. Solid State Ion. 176, 1521–1527 (2005).

    CAS  Article  Google Scholar 

  46. Chen, J.-M. et al. A complete high-to-low spin state transition of trivalent cobalt ion in octahedral symmetry in SrCo0.5Ru0.5O3−δ. J. Am. Chem. Soc. 136, 1514–1519 (2014).

    CAS  PubMed  Article  Google Scholar 

  47. Thole, B. T. & van der Laan, G. Branching ratio in X-ray absorption spectroscopy. Phys. Rev. B 38, 3158 (1988).

    CAS  Article  Google Scholar 

  48. Nam, D. N. H., Jonason, K., Nordblad, P., Khiem, N. V. & Phuc, N. X. Coexistence of ferromagnetic and glassy behavior in the La0.5Sr0.5CoO3 perovskite compound. Phys. Rev. B 59, 4189 (1999).

    CAS  Article  Google Scholar 

  49. Khiem, N. V., Bau, L. V., An, N. M., Phuc, N. X. & Nam, D. N. H. Effects of Fe doping on the magnetic and transport properties of La0.5Sr0.5(Co1−xFex)O3 (0 ≤ x ≤ 0.6). Phys. Rev. B 327, 187–189 (2003).

    CAS  Google Scholar 

  50. Marrero-López, D., Peña-Martínez, J., RuizMorales, J. C., Gabás, M., Núñez, P., Aranda, M. A. G. & Ramos-Barrado, J. R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ion. 180, 1672–1682 (2010).

    Article  CAS  Google Scholar 

  51. Ciucci, F. Modeling electrochemical impedance spectroscopy. Curr. Opin. Electrochem 13, 132–139 (2019).

    CAS  Article  Google Scholar 

  52. Wan, T. H., Saccoccio, M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools. Electrochim. Acta 184, 483–499 (2015).

    CAS  Article  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  PubMed  Article  Google Scholar 

  56. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Article  Google Scholar 

  57. Ritzmann, A. M., Dieterich, J. M. & Carter, E. A. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La0.5Sr0.5Co0.25Fe0.75O3−δ). Phys. Chem. Chem. Phys. 18, 12260–12269 (2016).

    PubMed  Article  Google Scholar 

  58. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  59. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

  60. Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215–221 (1961).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0702003 to Y.D.L.), the National Natural Science Foundation of China (21890383 to Y.D.L., 21871159 and 22171157 to D.W., and 52002249 to Y.H.L.), the Beijing Natural Science Foundation (2214061 to Z.Z.), the Science and Technology Key Project of Guangdong Province of China (2020B010188002 to D.W.), the Guangdong Basic and Applied Basic Research Foundation (2019A1515110025 to Y.H.L.), the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX and 2020III002GX to J.S.W.), and the China Postdoctoral Science Foundation (2019M660607 to Z.Z.). The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all of the laboratories are at Wuhan University of Technology). We thank the 1W1B and 4B9B beamlines of Beijing Synchrotron Radiation Facility (BSRF) and the BL14W1 beamline of Shanghai Synchrotron Radiation Facility (SSRF) for providing beam time to support this project. We also thank L. Zheng of Institute of High Energy Physics, Chinese Academy of Sciences and K. Cao of ShanghaiTech University for providing insightful discussions. Z.Z. acknowledges support from the Shuimu Tsinghua Scholar Program.

Author information

Authors and Affiliations

Authors

Contributions

D.W. and Y.D.L. supervised the research. Z.Z. conceived the idea, designed the experiments and analysed the data. Z.Z. and J.H. prepared the catalysts and Z.Z., Y.H.L., Z.L., J.Z. and J.H. performed the catalyst characterization. Z.Z., Y.H.L. and L.F. conducted the electrochemical tests. R.Y. performed the STEM studies and Z.Z., R.Y. and J.S.W. analysed the data. Z.Z. and Y.Z. developed the theoretical framework and Z.Z., J.Y. and L.X. carried out the DFT computations. Z.Z., J.Y., J.O.W. and Y.W. collected and analysed the X-ray absorption spectroscopy data. Z.Z. wrote the manuscript and all authors contributed to the discussions and revisions of the manuscript.

Corresponding authors

Correspondence to Dingsheng Wang or Yadong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks John Buckeridge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1-32 and Tables 1–7.

Supplementary Data 1

Atomic coordinates of optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Z., Li, Y., Yu, R. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat Catal 5, 300–310 (2022). https://doi.org/10.1038/s41929-022-00764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00764-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing