Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts

Abstract

CO is the simplest product from CO2 electroreduction (CO2R), but the identity and nature of its rate-limiting step remain controversial. Here we investigate the activity of transition metals (TMs), metal–nitrogen-doped carbon catalysts (MNCs) and a supported phthalocyanine, and present a unified mechanistic picture of the CO2R to CO for these catalysts. Applying the Newns–Andersen model, we find that on MNCs, like TMs, electron transfer to CO2 is facile. We find CO2* adsorption to generally be limiting on TMs, whereas MNCs can be limited by either CO2* adsorption or by the proton–electron transfer reaction to form COOH*. We evaluate these computed mechanisms against pH-dependent experimental activity measurements on the CO2R to CO activity. We present a unified activity volcano that includes the decisive CO2* and COOH* binding strengths. We show that the increased activity of MNC catalysts is due to the stabilization of larger adsorbate dipoles, which results from their discrete and narrow d states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rate of electron transfer on MNC ≈ 1014 s–1.
Fig. 2: Both CO2* adsorption and COOH* formation can be rate limiting.
Fig. 3: General activity volcano for CO2R to CO.
Fig. 4: Narrow d states stabilize larger dipoles.

Similar content being viewed by others

Data availability

All computational data, which include the adsorption energies of CO2, COOH and CO, optimized atomic coordinates, data for plotting density of states and microkinetic analysis are available at https://doi.org/10.24435/materialscloud:ws-7t.

Code availability

Python analysis scripts to reproduce all the figures in the manuscript are available at https://github.com/CatTheoryDTU/kinetic-modelling-CO2R.

References

  1. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  2. Seh, Z. W. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, aad4998 (2017).

    Article  Google Scholar 

  3. Anastasiadou, D., Hensen, E. J. M. & Figueiredo, M. C. Electrocatalytic synthesis of organic carbonates. Chem. Commun. 56, 13082–13092 (2020).

    Article  CAS  Google Scholar 

  4. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  CAS  Google Scholar 

  6. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catal. Today 288, 74–78 (2017).

    Article  CAS  Google Scholar 

  7. Clark, E. L. et al. Influence of atomic surface structure on the activity of Ag for the electrochemical reduction of CO2 to CO. ACS Catal. 9, 4006–4014 (2019).

    Article  CAS  Google Scholar 

  8. Varela, A. S. et al. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018).

    Article  CAS  Google Scholar 

  9. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2 -to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2018).

    Article  CAS  Google Scholar 

  11. Prslja, P. & López, N. Stability and redispersion of Ni nanoparticles supported on N-doped carbons for the CO2 electrochemical reduction. ACS Catal. 11, 88–94 (2021).

    Article  CAS  Google Scholar 

  12. Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  15. Limaye, A. M., Zeng, J. S., Willard, A. P. & Manthiram, K. Bayesian data analysis reveals no preference for cardinal Tafel slopes in CO2 reduction electrocatalysis. Nat. Commun. 12, 703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hori, Y., Wakebe, H., Tsukamoto, T. & Koga, O. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39, 1833–1839 (1994).

    Article  CAS  Google Scholar 

  17. Brown, S. M. et al. Electron transfer limitation in carbon dioxide reduction revealed by data-driven Tafel analysis. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.13244906.v1 (2020).

  18. Ju, W. et al. Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe–N–C single-site catalysts. ACS Energy Lett. 4, 1663–1671 (2019).

    Article  CAS  Google Scholar 

  19. Benson, E. E., Kubiak, C. P., Sathrum, A. J. & Smieja, J. M. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev. 38, 89–99 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Göttle, A. J. & Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 8, 458–465 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gennaro, A. et al. Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J. Chem. Soc. Faraday Trans. 92, 3963–3968 (1996).

    Article  CAS  Google Scholar 

  22. Zhang, B. A., Costentin, C. & Nocera, D. G. Driving force dependence of inner-sphere electron transfer for the reduction of CO2 on a gold electrode. J. Chem. Phys. 153, 094701 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Ringe, S. et al. Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold. Nat. Commun. 11, 33 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vijay, S. et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe–N–C single atom catalysts. ACS Catal. 10, 7826–7835 (2020).

    Article  CAS  Google Scholar 

  25. Gauthier, J. A. et al. Facile electron transfer to CO2 during adsorption at the metal|solution interface. J. Phys. Chem. C 123, 29278–29283 (2019).

    Article  CAS  Google Scholar 

  26. Verma, A. M., Honkala, K. & Melander, M. M. Computational screening of doped graphene electrodes for alkaline CO2 reduction. Front. Energy Res. 8, 388 (2021).

    Article  Google Scholar 

  27. Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    Article  CAS  Google Scholar 

  28. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article  CAS  Google Scholar 

  29. Grimley, T. B. Overlap effects in the theory of adsorption using Anderson’s Hamiltonian. J. Phys. C 3, 1934–1942 (1970).

    Article  CAS  Google Scholar 

  30. Gauthier, J. A. et al. Challenges in modeling electrochemical reaction energetics with polarizable continuum models. ACS Catal. 9, 920–931 (2019).

    Article  CAS  Google Scholar 

  31. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2014).

  32. Kim, D., Shi, J. & Liu, Y. Substantial impact of charge on electrochemical reactions of two-dimensional materials. J. Am. Chem. Soc. 140, 9127–9131 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Mehdipour, H. et al. Dependence of electron transfer dynamics on the number of graphene layers in π-stacked 2d materials: insights from ab initio nonadiabatic molecular dynamics. Phys. Chem. Chem. Phys. 21, 23198–23208 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Hansen, H. A., Viswanathan, V. & Nørskov, J. K. Unifying kinetic and thermodynamic analysis of 2 e and 4 e reduction of oxygen on metal surfaces. J. Phys. Chem. C 118, 6706–6718 (2014).

    Article  CAS  Google Scholar 

  35. Limmer, D. T., Willard, A. P., Madden, P. & Chandler, D. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc. Natl Acad. Sci. USA 110, 4200–4205 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  36. Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).

    Article  CAS  Google Scholar 

  37. Patel, A. M. et al. Theoretical approaches to describing the oxygen reduction reaction activity of single-atom catalysts. J. Phys. Chem. C 122, 29307–29318 (2018).

    Article  CAS  Google Scholar 

  38. Mortensen, J. J., Hammer, B. & Nørskov, J. K. Alkali promotion of N2 dissociation over Ru(0001). Phys. Rev. Lett. 80, 4333–4336 (1998).

    Article  CAS  Google Scholar 

  39. Marshall-Roth, T. et al. A pyridinic Fe–N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts. Nat. Commun. 11, 5283 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sa, Y. J. et al. Thermal transformation of molecular Ni2+–N4 sites for enhanced CO2 electroreduction activity. ACS Catal. 10, 10920–10931 (2020).

    Article  CAS  Google Scholar 

  41. Hossain, M. D., Huang, Y., Yu, T. H., Goddard, W. A. & Luo, Z. Reaction mechanism and kinetics for CO2 reduction on nickel single atom catalysts from quantum mechanics. Nat. Commun. 11, 2256 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, H. et al. Identification of single-atom Ni site active toward electrochemical CO2 conversion to CO. J. Am. Chem. Soc. 143, 925–933 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Marcandalli, G., Villalba, M. & Koper, M. T. M. The importance of acid–base equilibria in bicarbonate electrolytes for CO2 electrochemical reduction and CO reoxidation studied on Au(hkl) electrodes. Langmuir 37, 5707–5716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luo, F. et al. Accurate evaluation of active-site density (SD) and turnover frequency (TOF) of PGM-free metal–nitrogen-doped carbon (MNC) electrocatalysts using CO cryo adsorption. ACS Catal. 9, 4841–4852 (2019).

    Article  CAS  Google Scholar 

  45. Kramm, U. I. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 14, 11673–11688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

    Article  CAS  Google Scholar 

  47. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    Article  CAS  Google Scholar 

  48. Luo, F. et al. Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chem. Sci. 12, 384–396 (2021).

    Article  CAS  Google Scholar 

  49. Vojvodic, A., Nørskov, J. K. & Abild-Pedersen, F. Electronic structure effects in transition metal surface chemistry. Top. Catal. 57, 25–32 (2014).

    Article  CAS  Google Scholar 

  50. Xin, H., Vojvodic, A., Voss, J., Nørskov, J. K. & Abild-Pedersen, F. Effects of d-band shape on the surface reactivity of transition-metal alloys. Phys. Rev. B 89, 115114 (2014).

    Article  Google Scholar 

  51. Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Thirumalai, H. & Kitchin, J. R. Investigating the reactivity of single atom alloys using density functional theory. Top. Catal. 61, 462–474 (2018).

    Article  CAS  Google Scholar 

  53. Larsen, A. H., Kleis, J., Thygesen, K. S., Nørskov, J. K. & Jacobsen, K. W. Electronic shell structure and chemisorption on gold nanoparticles. Phys. Rev. B 84, 245429 (2011).

    Article  Google Scholar 

  54. Li, L. et al. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4, 222–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Ji, Y., Nørskov, J. K. & Chan, K. Scaling relations on basal plane vacancies of transition metal dichalcogenides for CO2 reduction. J. Phys. Chem. C 123, 4256–4261 (2019).

    Article  CAS  Google Scholar 

  56. Zhao, X. & Liu, Y. Unveiling the active structure of single nickel atom catalysis: critical roles of charge capacity and hydrogen bonding. J. Am. Chem. Soc. 142, 5773–5777 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Singh, A. R. et al. Computational design of active site structures with improved transition-state scaling for ammonia synthesis. ACS Catal. 8, 4017–4024 (2018).

    Article  CAS  Google Scholar 

  58. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  59. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  60. Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  Google Scholar 

  61. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  62. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  63. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  64. Dudarev, S. & Botton, G. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  CAS  Google Scholar 

  65. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  66. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  67. Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  68. Mathew, K., Kolluru, V. S. C., Mula, S., Steinmann, S. N. & Hennig, R. G. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 151, 234101 (2019).

    Article  PubMed  Google Scholar 

  69. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  70. Medford, A. J. et al. CatMAP: a software package for descriptor-based microkinetic mapping of catalytic trends. Catal. Letters 145, 794–807 (2015).

    Article  CAS  Google Scholar 

  71. Luo, F. et al. P-block single-metal-site tin/nitrogen-doped carbon fuel cell cathode catalyst for oxygen reduction reaction. Nat. Mater. 19, 1215–1223 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Möller, T. et al. Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 12, 640–647 (2019).

    Article  Google Scholar 

  73. Zhang, X. et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat. Energy 5, 684–692 (2020).

    Article  CAS  Google Scholar 

  74. Gu, J., Hsu, C. S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 851441, SELECTCO2, and from the VILLUM Centre for the Science of Sustainable Fuels and Chemicals (no. 9455) from VILLUM FONDEN. Research leading to some of these results received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement no. 779366, CRESCENDO. The authors acknowledge computational resource from PRACE (project ID: prpa85) and the Juelich Supercomputing Centre. We thank G. Kastlunger for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.V. and K.C. designed the computational study and wrote the first draft of the paper. S.V. and S.-C.T. performed the DFT calculations and the data analysis. P.S. designed the experiments, and W.J. and S.B. performed them. All the authors contributed to revising the manuscript.

Corresponding authors

Correspondence to Peter Strasser or Karen Chan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Yang Hou, Hyungjun Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijay, S., Ju, W., Brückner, S. et al. Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nat Catal 4, 1024–1031 (2021). https://doi.org/10.1038/s41929-021-00705-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00705-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing