Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation

Abstract

The development of acid-stable oxygen evolution reaction electrocatalysts is essential for high-performance water splitting. Here, we report an electrocatalyst with Ru-atom-array patches supported on α-MnO2 (Ru/MnO2) for the oxygen evolution reaction following a mechanism that involves only *O and *OH species as intermediates. This mechanism allows direct O–O radical coupling for O2 evolution. Ru/MnO2 shows high activity (161 mV at 10 mA cm−2) and outstanding stability with small degradation after 200 h operation, making it one of the best-performing acid-stable oxygen evolution reaction catalysts. Operando vibrational and mass spectroscopy measurements were performed to probe the reaction intermediates and gaseous products for validating the oxygen evolution reaction pathway. First-principles calculations confirmed the cooperative catalysis mechanism with a reduced energy barrier. Time-dependent elemental analysis demonstrated the occurrence of the in-situ dynamic cation exchange reaction during the oxygen evolution reaction, which is the key for triggering the reconstruction of Ru atoms into the ordered array with high durability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of OER mechanisms for a heterogeneous Ru-based OER electrocatalyst.
Fig. 2: Structural characterization of the 12Ru/MnO2 catalyst.
Fig. 3: OER performance.
Fig. 4: OER process analysis.
Fig. 5: OER mechanism analysis based on DFT simulation results.
Fig. 6: OER mechanism analysis.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data supporting the findings of this study are available within the article and its Supplementary Information or from the corresponding authors upon reasonable request.

Code availability

The software codes for Large-scale Atomic Simulation with neural network Potential and the NN potentials used within the article are available from the corresponding authors upon request or on the website http://www.lasphub.com.

References

  1. King, L. A. et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat. Nanotechnol. 14, 1071–1074 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Li, A. et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions. Angew. Chem. Int. Ed. 58, 5054–5058 (2019).

    Article  CAS  Google Scholar 

  4. Johnson Matthey Price Charts (Johnson Matthey, accessed 15 December 2020); www.platinum.matthey.com/prices/price-charts#

  5. Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

    Article  CAS  Google Scholar 

  6. Stoerzinger, K. A. et al. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2, 668–675 (2017).

    Article  CAS  Google Scholar 

  7. Yao, Y. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2, 304–313 (2019).

    Article  CAS  Google Scholar 

  8. Reier, T., Nong, H. N., Teschner, D., Schlögl, R. & Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments – reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2017).

    Article  Google Scholar 

  9. Song, J. et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    Article  CAS  Google Scholar 

  11. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  12. Huang, Z.-F. et al. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 1, 1494–1518 (2019).

    Article  Google Scholar 

  13. Hao, S. et al. Dopants fixation of ruthenium for boosting acidic oxygen evolution stability and activity. Nat. Commun. 11, 5368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, H. et al. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem. Int. Ed. 59, 19654–19658 (2020).

    Article  CAS  Google Scholar 

  15. Shan, J. et al. Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem 5, 445–459 (2019).

    Article  CAS  Google Scholar 

  16. Shan, J., Ling, T., Davey, K., Zheng, Y. & Qiao, S.-Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 31, 1900510 (2019).

    Article  Google Scholar 

  17. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, J. et al. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 10, 5692 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, M., Park, J., Kang, M., Kim, J. Y. & Lee, S. W. Toward efficient electrocatalytic oxygen evolution: emerging opportunities with metallic pyrochlore oxides for electrocatalysts and conductive supports. ACS Cent. Sci. 6, 880–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, Z.-F. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

    Article  CAS  Google Scholar 

  21. Bockris, J. O. M. Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956).

    Article  CAS  Google Scholar 

  22. Song, F. et al. An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5, 558–568 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46, 6088–6098 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Roy, C. et al. Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett. 3, 2045–2051 (2018).

    Article  CAS  Google Scholar 

  25. Hodnik, N. et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media. J. Phys. Chem. C 119, 10140–10147 (2015).

    Article  CAS  Google Scholar 

  26. Rong, X., Parolin, J. & Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016).

    Article  CAS  Google Scholar 

  27. Kodera, M. et al. Reversible O–O bond scission of peroxodiiron(III) to high-spin oxodiiron(IV) in dioxygen activation of a diiron center with a bis-tpa dinucleating ligand as a soluble methane monooxygenase model. J. Am. Chem. Soc. 134, 13236–13239 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Okamura, M. et al. A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H. et al. Enhanced interactions between gold and MnO2 nanowires for water oxidation: a comparison of different chemical and physical preparation methods. ACS Sustain. Chem. Eng. 3, 2049–2057 (2015).

    Article  CAS  Google Scholar 

  30. Ling, T., Jaroniec, M. & Qiao, S.-Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 32, 2001866 (2020).

    Article  CAS  Google Scholar 

  31. Lübke, M. et al. Transition-metal-doped α-MnO2 nanorods as bifunctional catalysts for efficient oxygen reduction and evolution reactions. ChemistrySelect 3, 2613–2622 (2018).

    Article  Google Scholar 

  32. Morgan, D. J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47, 1072–1079 (2015).

    Article  CAS  Google Scholar 

  33. Liu, X. et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries. Adv. Energy Mater. 11, 2003583 (2021).

    Article  CAS  Google Scholar 

  34. Guo, Y. et al. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 8, 6203–6215 (2018).

    Article  CAS  Google Scholar 

  35. Miao, X. et al. Quadruple perovskite ruthenate as a highly efficient catalyst for acidic water oxidation. Nat. Commun. 10, 3809 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cao, L. et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 10, 4849 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kötz, R., Lewerenz, H. J. & Stucki, S. XPS studies of oxygen evolution on Ru and RuO2 anodes. J. Electrochem. Soc. 130, 825–829 (1983).

    Article  Google Scholar 

  39. Kwon, T. et al. Interfacing RuO2 with Pt to induce efficient charge transfer from Pt to RuO2 for highly efficient and stable oxygen evolution in acidic media. J. Mater. Chem. A 9, 14352–14362 (2021).

    Article  CAS  Google Scholar 

  40. Frydendal, R., Paoli, E. A., Chorkendorff, I., Rossmeisl, J. & Stephens, I. E. L. Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2. Adv. Energy Mater. 5, 1500991 (2015).

    Article  Google Scholar 

  41. Huang, S.-D., Shang, C., Zhang, X.-J. & Liu, Z.-P. Material discovery by combining stochastic surface walking global optimization with a neural network. Chem. Sci. 8, 6327–6337 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shang, C., Zhang, X.-J. & Liu, Z.-P. Stochastic surface walking method for crystal structure and phase transition pathway prediction. Phys. Chem. Chem. Phys. 16, 17845–17856 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. García-Mota, M. et al. Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem 3, 1607–1611 (2011).

    Article  Google Scholar 

  44. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Chang, C.-J., Chu, Y.-C., Yan, H.-Y., Liao, Y.-F. & Chen, H. M. Revealing the structural transformation of rutile RuO2 via in situ X-ray absorption spectroscopy during the oxygen evolution reaction. Dalton Trans. 48, 7122–7129 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Cheng, W. et al. Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 4, 115–122 (2019).

    Article  CAS  Google Scholar 

  47. Su, H. et al. Dynamic evolution of solid–liquid electrochemical interfaces over single-atom active sites. J. Am. Chem. Soc. 142, 12306–12313 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Lang, C. et al. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem https://doi.org/10.1016/j.chempr.2021.03.015 (2021).

  49. Wang, B. et al. In situ structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy Environ. Sci. 13, 2200–2208 (2020).

    Article  CAS  Google Scholar 

  50. Vivek, J. P., Berry, N. G., Zou, J., Nichols, R. J. & Hardwick, L. J. In situ surface-enhanced infrared spectroscopy to identify oxygen reduction products in nonaqueous metal–oxygen batteries. J. Phys. Chem. C 121, 19657–19667 (2017).

    Article  CAS  Google Scholar 

  51. Tao, H. B. et al. A general method to probe oxygen evolution intermediates at operating conditions. Joule 3, 1498–1509 (2019).

    Article  CAS  Google Scholar 

  52. Zhang, N. et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pfeifer, V. et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8, 2143–2149 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Liang, C. et al. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 13, 86–95 (2020).

    Article  CAS  Google Scholar 

  55. Kuznetsov, D. A. et al. Tailoring lattice oxygen binding in ruthenium pyrochlores to enhance oxygen evolution activity. J. Am. Chem. Soc. 142, 7883–7888 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Wang, J. et al. Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 7, 6533–6541 (2017).

    Article  CAS  Google Scholar 

  57. Bao, J. et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 54, 7399–7404 (2015).

    Article  CAS  Google Scholar 

  58. Näslund, L.-Å., Ingason, Á. S., Holmin, S. & Rosen, J. Formation of RuO(OH)2 on RuO2-based electrodes for hydrogen production. J. Phys. Chem. C 118, 15315–15323 (2014).

    Article  Google Scholar 

  59. Liang, Y. et al. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Lei, C. et al. Fe-N4 sites embedded into carbon nanofiber integrated with electrochemically exfoliated graphene for oxygen evolution in acidic medium. Adv. Energy Mater. 8, 1801912 (2018).

    Article  Google Scholar 

  61. Xu, X., Song, F. & Hu, X. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 7, 12324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Görlin, M. et al. Oxygen evolution reaction dynamics, Faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016).

    Article  PubMed  Google Scholar 

  63. Huang, S.-D., Shang, C., Kang, P.-L. & Liu, Z.-P. Atomic structure of boron resolved using machine learning and global sampling. Chem. Sci. 9, 8644–8655 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang, S.-D., Shang, C., Kang, P.-L., Zhang, X.-J. & Liu, Z.-P. LASP: fast global potential energy surface exploration. WIREs Comput. Mol. Sci. 9, e1415 (2019).

    Article  CAS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  66. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  68. Cococcioni, M. & De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

  69. García-Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C 116, 21077–21082 (2012).

    Article  Google Scholar 

  70. Li, Y.-F. & Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148–1153 (2014).

    Article  CAS  Google Scholar 

  71. Shang, C. & Liu, Z. P. Stochastic surface walking method for structure prediction and pathway searching. J. Chem. Theory Comput. 9, 1838–1845 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Shang, C. & Liu, Z.-P. Constrained Broyden minimization combined with the dimer method for locating transition state of complex reactions. J. Chem. Theo. Comput. 6, 1136–1144 (2010).

    Article  CAS  Google Scholar 

  73. Fattebert, J. L. & Gygi, F. Linear-scaling first-principles molecular dynamics with plane-waves accuracy. Phys. Rev. B 73, 115124 (2006).

    Article  Google Scholar 

  74. Fang, Y. H. & Liu, Z. P. Mechanism and Tafel lines of electro-oxidation of water to oxygen on RuO2(110). J. Am. Chem. Soc. 132, 18214–18222 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Li, Y.-F. & Liu, Z.-P. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. J. Am. Chem. Soc. 133, 15743–15752 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. You, B., Jiang, N., Sheng, M., Bhushan, M. W. & Sun, Y. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 6, 714–721 (2016).

    Article  CAS  Google Scholar 

  78. Li, Y.-F. & Liu, Z.-P. Active site revealed for water oxidation on electrochemically induced δ-MnO2: role of spinel-to-layer phase transition. J. Am. Chem. Soc. 140, 1783–1792 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Y.-F., Liu, Z.-P., Liu, L. & Gao, W. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J. Am. Chem. Soc. 132, 13008–13015 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Gao, T. et al. Synthesis and properties of layered-structured Mn5O8 nanorods. J. Phys. Chem. C 114, 922–928 (2010).

    Article  CAS  Google Scholar 

  81. Suen, N. T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    Article  PubMed  Google Scholar 

  82. Burstein, G. T. A century of Tafel’s equation: a commemorative issue of corrosion science. Corros. Sci. 47, 2855–2856 (2005).

    Article  CAS  Google Scholar 

  83. & Forslund, R. P. et al. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexOδ Ruddlesden–Popper oxides. Nat. Commun. 9, 3150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Naresh Kumar, T., Sivabalan, S., Chandrasekaran, N. & Phani, K. L. Synergism between polyurethane and polydopamine in the synthesis of Ni–Fe alloy monoliths. Chem. Commun. 51, 1922–1925 (2015).

    Article  CAS  Google Scholar 

  85. Sultan, S. et al. Superb water splitting activity of the electrocatalyst Fe3Co(PO4)4 designed with computation aid. Nat. Commun. 10, 5195 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.-H.L. appreciates the support from the Creative Materials Discovery Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (2018M3D1A1057844). X.L. acknowledges financial support from the National Natural Science Foundation of China (no. 21972163), the Fundamental Research Funds for the Central Universities, the DHU Distinguished Young Professor Program, the Development Fund for Shanghai Talents, and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Z.J. acknowledges the financial support from the National Natural Science Foundation of China (no. U1732267). XANES and EXAFS studies were carried out with the BL14W1 beamline at the Shanghai Synchrotron Radiation Facility (16ssrf00787). Z.-P.L. appreciates the support from National Key Research and Development Program of China (no. 2018YFA0208600). We thank Q. Liu from the University of Science and Technology of China for his helpful suggestions with synchrotron FTIR measurement and H. Zhang from the Shanghai Synchrotron Radiation Facility for his assistance in XPS analysis.

Author information

Authors and Affiliations

Authors

Contributions

C.L., X.L. and J.-H.L. conceived the project design. C.L. prepared the samples and measured their electrochemical properties. C.L., S.-H.K., D.-H.K. and S.S.S. performed the XPS, SEM and TEM characterizations. S.Y., Y.Z., X.L. and Z.J. performed the operando measurements and analysed the data. J.-L.L., Y.-F.L. and Z.-P.L. performed the DFT calculations. C.L., X.L., Z.J. and J.-H.L. wrote and revised the paper with help from all authors. W.L. helped with the manuscript revision. J.-H.L. supervised the research.

Corresponding authors

Correspondence to Xiaopeng Li, Zhi-Pan Liu, Zheng Jiang or Jung-Ho Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Sergio Rojas, Kirsten Winther and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Tables 1–13, Notes 1–7 and Methods.

Supplementary Data 1

The coordinates of structure by the fixed-cell SSW-NN method of Ru-doped MnO2 (110) surface in Supplementary Fig. 20.

Supplementary Data 2

The coordinates of structure for key intermediates of the LOM pathway on the Mn site in Supplementary Fig. 21.

Source data

Source Data Fig. 3

Chronopotentiometry curves.

Source Data Fig. 5

The coordinates of structures for key intermediates of the OPM and AEM reaction pathways.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Li, JL., Li, X. et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat Catal 4, 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00703-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing