Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene

Abstract

Single-atom catalysis is recognized as a frontier of heterogeneous catalysis for its efficient utilization of metals and the possibility to engender unusual reactivity. Yet, despite the observation of single atoms, understanding their coordination structures and developing structure–property relationships remains challenging due to the structural complexity of support surfaces. Here, using single-crystalline MgO(111) two-dimensional nanosheets and a surface organometallic chemistry method, we describe the formation of highly dispersed Ir(III) sites (isolated at 0.1 wt%, and Ir pairs and trimers at 1 wt%) with well-defined coordination structures. These species display unique catalytic properties in the coupling reaction of benzene and ethylene to form styrene, a reactivity that contrasts with conventional homogeneous and heterogeneous iridium catalysts that yield ethylbenzene. The similar activities for high- and low-loading catalysts suggest that iridium sites, whether isolated or in the form of clusters (for example Ir3), have similar activity, consistent with the involvement of surface dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Materials preparation and characterization.
Fig. 2: Characterization of Ir/MgO-cal.
Fig. 3: Reaction mechanism study.
Fig. 4: Characterization of spent catalysts.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the manuscript and its Supplementary Information or from the corresponding authors upon request.

References

  1. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  2. Ji, S. et al. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyse efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Jones, J. et al. Thermally single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  11. Liu, D. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019).

    Article  CAS  Google Scholar 

  12. Korzyński, M. D. & Copéret, C. Single sites in heterogeneous catalysts: separating myth from reality. Trends Chem. 3, 850–862 (2021).

    Article  Google Scholar 

  13. Christopher, P. Single-atom catalysts: are all sites created equal? ACS Energy Lett. 4, 2249–2250 (2019).

    Article  CAS  Google Scholar 

  14. Liu, P. & Zheng, N. Coordination chemistry of atomically dispersed catalysts. Natl Sci. Rev. 5, 636–638 (2018).

    Article  CAS  Google Scholar 

  15. Qin, R., Liu, K., Wu, Q. & Zheng, N. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 120, 11810–11899 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Parks, G. A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65, 177–198 (1965).

    Article  CAS  Google Scholar 

  17. Campbell, C. T. & Sauer, J. Introduction: surface chemistry of oxides. Chem. Rev. 113, 3859–3862 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hoffman, A. S., Fang, C.-Y. & Gates, B. C. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7, 3854–3860 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Fang, C.-Y. et al. Reversible metal aggregation and redispersion driven by the catalytic water gas shift half-reactions: interconversion of single-site rhodium complexes and tetrarhodium clusters in zeolite HY. ACS Catal. 9, 3311–3321 (2019).

    Article  CAS  Google Scholar 

  21. Tang, Y. et al. Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat. Commun. 10, 4488 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Speck, F. D. et al. Atomistic insights into the stability of Pt single-atom electrocatalysts. J. Am. Chem. Soc. 142, 15496–15504 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Ida, S., Kim, N., Ertekin, E., Takenaka, S. & Ishihara, T. Photocatalytic reaction centers in two-dimensional titanium oxide crystals. J. Am. Chem. Soc. 137, 239–244 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, L. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018).

    Article  CAS  Google Scholar 

  25. Li, X., Yang, X., Zhang, J., Huang, Y. & Liu, B. In situ/operando techniques for characterization of single-atom catalysts. ACS Catal. 9, 2521–2531 (2019).

    Article  CAS  Google Scholar 

  26. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  CAS  Google Scholar 

  27. Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017).

    Article  CAS  Google Scholar 

  28. Liu, P., Abdala, P. M., Goubert, G., Willinger, M.-G. & Copéret, C. Ultrathin single-crystalline MgO(111) nanosheets. Angew. Chem. Int. Ed. 60, 3254–3260 (2021).

    Article  CAS  Google Scholar 

  29. Copéret, C. Single-sites and nanoparticles at tailored interfaces prepared via surface organometallic chemistry from thermolytic molecular precursors. Acc. Chem. Res. 52, 1697–1708 (2019).

    Article  PubMed  Google Scholar 

  30. Samantaray, M. K. et al. The comparison between single atom catalysis and surface organometallic catalysis. Chem. Rev. 120, 734–813 (2019).

    Article  PubMed  Google Scholar 

  31. Wegener, S. L., Marks, T. J. & Stair, P. C. Design strategies for the molecular level synthesis of supported catalysts. Acc. Chem. Res. 45, 206–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Arndtsen, B. A. & Bergman, R. G. Unusually mild and selective hydrocarbon C–H bond activation with positively charged iridium(III) complexes. Science 270, 1970–1973 (1995).

    Article  CAS  Google Scholar 

  33. Reyes, R. L. et al. Asymmetric remote C–H borylation of aliphatic amides and esters with a modular iridium catalyst. Science 369, 970–974 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev. 117, 9333–9403 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Cooper, P., Crisenza, G. E., Feron, L. J. & Bower, J. F. Iridium-catalyzed α-selective arylation of styrenes by dual C–H functionalization. Angew. Chem. 130, 14394–14398 (2018).

    Article  Google Scholar 

  36. Periana, R. A., Liu, X. Y. & Bhalla, G. Novel bis-acac-O,O–Ir(III) catalyst for anti-Markovnikov, hydroarylation of olefins operates by arene C–H activation. Chem. Commun. 2002, 3000–3001 (2002).

    Article  Google Scholar 

  37. Hoffman, A. S. et al. Beating heterogeneity of single-site catalysts: MgO-supported iridium complexes. ACS Catal. 8, 3489–3498 (2018).

    Article  CAS  Google Scholar 

  38. Kawi, S. & Gates, B. C. Organometallic chemistry on the basic magnesium oxide surface: formation of [HIr4(CO)11],[Ir6(CO)15]2–, and [Ir8(CO)22]2–. Inorg. Chem. 31, 2939–2947 (1992).

    Article  CAS  Google Scholar 

  39. Yang, D. et al. Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67: Catalyst for ethylene hydrogenation. J. Catal. 382, 165–172 (2020).

    Article  CAS  Google Scholar 

  40. Frank, M., Kühnemuth, R., Bäumer, M. & Freund, H.-J. Vibrational spectroscopy of CO adsorbed on supported ultra-small transition metal particles and single metal atoms. Surf. Sci. 454, 968–973 (2000).

    Article  Google Scholar 

  41. Fu, S. L. & Lunsford, J. H. Chemistry of organochromium complexes on inorganic oxide supports. 2. The interactions of carbon oxides with chromocene on silica catalysts. Langmuir 6, 1784–1792 (1990).

    Article  CAS  Google Scholar 

  42. Lebedev, D. et al. Atomically dispersed iridium on indium tin oxide efficiently catalyzes water oxidation. ACS Cent. Sci. 6, 1189–1198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shao, X. et al. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 5, 693–705 (2019).

    Article  CAS  Google Scholar 

  44. Abbott, D. F. et al. Iridium oxide for the oxygen evolution reaction: correlation between particle size, morphology, and the surface hydroxo layer from operando XAS. Chem. Mater. 28, 6591–6604 (2016).

    Article  CAS  Google Scholar 

  45. Pfeifer, V. et al. The electronic structure of iridium and its oxides. Surf. Interface Anal. 48, 261–273 (2016).

    Article  CAS  Google Scholar 

  46. Freakley, S. J., Ruiz‐Esquius, J. & Morgan, D. J. The X‐ray photoelectron spectra of Ir, IrO2 and IrCl3 revisited. Surf. Interface Anal. 49, 794–799 (2017).

    Article  CAS  Google Scholar 

  47. Zuo, J.-M., O’Keeffe, M., Rez, P. & Spence, J. Charge density of MgO: implications of precise new measurements for theory. Phys. Rev. Lett. 78, 4777 (1997).

    Article  CAS  Google Scholar 

  48. Nong, H. N. et al. The role of surface hydroxylation, lattice vacancies and bond covalency in the electrochemical oxidation of water (OER) on Ni-depleted iridium oxide catalysts. Z. Phys. Chem. 234, 787–812 (2020).

    Article  CAS  Google Scholar 

  49. Weber, D. et al. Trivalent iridium oxides: layered triangular lattice iridate K0.75Na0.25IrO2 and oxyhydroxide IrOOH. Chem. Mater. 29, 8338–8345 (2017).

    Article  CAS  Google Scholar 

  50. Héroguel, F. et al. Dense and narrowly distributed silica-supported rhodium and iridium nanoparticles: preparation via surface organometallic chemistry and chemisorption stoichiometry. J. Catal. 316, 260–269 (2014).

    Article  Google Scholar 

  51. Wu, S. et al. Removal of hydrogen poisoning by electrostatically polar MgO support for low-pressure NH3 synthesis at a high rate over the Ru catalyst. ACS Catal. 10, 5614–5622 (2020).

    Article  CAS  Google Scholar 

  52. Noguera, C. Polar oxide surfaces. J. Phys. Condens. Matter 12, R367–R410 (2000).

    Article  CAS  Google Scholar 

  53. Anpo, M. et al. Generation of superoxide ions at oxide surfaces. Top. Catal. 8, 189 (1999).

    Article  CAS  Google Scholar 

  54. Sánchez, N. M. & de Klerk, A. Autoxidation of aromatics. Appl. Petrochem. Res. 8, 55–78 (2018).

    Article  Google Scholar 

  55. Oxgaard, J., Muller, R. P., Goddard, W. A. & Periana, R. A. Mechanism of homogeneous Ir(III) catalyzed regioselective arylation of olefins. J. Am. Chem. Soc. 126, 352–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Mance, D., Comas-Vives, A. & Copéret, C. Proton-detected multidimensional solid-state NMR enables precise characterization of vanadium surface species at natural abundance. J. Phys. Chem. Lett. 10, 7898–7904 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. McKeown, B. A. et al. Platinum(II)-catalyzed ethylene hydrophenylation: switching selectivity between alkyl-and vinylbenzene production. Organometallics 32, 2857–2865 (2013).

    Article  CAS  Google Scholar 

  58. Jia, X. et al. Styrene production from benzene and ethylene catalyzed by palladium(II): enhancement of selectivity toward styrene via temperature-dependent vinyl ester consumption. Organometallics 38, 3532–3541 (2019).

    Article  CAS  Google Scholar 

  59. Lee, I. Secondary kinetic isotope effects involving deuterated nucleophiles. Chem. Soc. Rev. 24, 223–229 (1995).

    Article  CAS  Google Scholar 

  60. Zhu, W. & Gunnoe, T. B. Advances in rhodium-catalyzed oxidative arene alkenylation. Acc. Chem. Res. 53, 920–936 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Ritleng, V., Sirlin, C. & Pfeffer, M. Ru-, Rh-, and Pd-catalyzed C−C bond formation involving C−H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem. Rev. 102, 1731–1770 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Li, Y. & Tsang, S. C. E. Unusual catalytic properties of high-energetic-facet polar metal oxides. Acc. Chem. Res. 54, 5614–5622 (2020).

    Google Scholar 

  63. Wu, S. et al. Rapid interchangeable hydrogen, hydride, and proton species at the interface of transition metal atom on oxide surface. J. Am. Chem. Soc. 143, 9105–9112 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Luo, Z. et al. Oxidative alkenylation of arenes using supported Rh materials: evidence that active catalysts are formed by Rh leaching. ChemCatChem 13, 260–270 (2021).

    Article  CAS  Google Scholar 

  65. Matsumoto, T., Taube, D. J., Periana, R. A., Taube, H. & Yoshida, H. Anti-Markovnikov olefin arylation catalyzed by an iridium complex. J. Am. Chem. Soc. 122, 7414–7415 (2000).

    Article  CAS  Google Scholar 

  66. Bennett, M. & Mitchell, T. γ-Carbon-bonded 2,4-pentanedionato complexes of trivalent iridium. Inorg. Chem. 15, 2936–2938 (1976).

    Article  CAS  Google Scholar 

  67. Povia, M. et al. Operando X-ray characterization of high surface area iridium oxides to decouple their activity losses for the oxygen evolution reaction. Energy Environ. Sci. 12, 3038–3052 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P. Liu acknowledges support from the ETHZ Postdoctoral Fellowship Program, the Marie Curie Actions for People COFUND Program, ShanghaiTech University start-up funding and the Shanghai Pujiang Program. We are grateful to ScopeM (ETH Zürich) for access to the electron microscopy facilities. We also thank PSI for access to the Swiss Light Source SuperXAS beamline to make the XAS measurements. We acknowledge S. Zhang for the XPS measurements and N. Zheng for offering experiment facilities during the revision.

Author information

Authors and Affiliations

Authors

Contributions

P.L. and C.C. conceived the project. C.C. supervised the research; P.L. performed the preparation and most of the characterization and catalytic tests; X.H. performed the ADF-STEM measurements; D.M. performed the ssNMR measurements. All the authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Pengxin Liu or Christophe Copéret.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Steven Tait and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, Tables 1–4 and References 1 and 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Huang, X., Mance, D. et al. Atomically dispersed iridium on MgO(111) nanosheets catalyses benzene–ethylene coupling towards styrene. Nat Catal 4, 968–975 (2021). https://doi.org/10.1038/s41929-021-00700-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00700-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing