Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations

Abstract

Particle size governs the geometric and electronic structure of metal nanoparticles (NPs), shaping their catalytic performance. However, size-dependent entanglement in the geometric and electronic structures often leads to a trade-off between activity and selectivity, limiting the optimization of the overall catalytic performance. Here we show that precisely controlled deposition of a platinum monolayer on large gold NPs breaks the activity–selectivity trade-off on particle size in platinum-catalysed chemoselective hydrogenation of halonitrobenzenes, resulting in a remarkable activity, along with a 99% selectivity for haloanilines under mild conditions. The high activity results from upshift of the platinum 5d-band centre through platinum lattice expansion and ligand effect, whereas the high selectivity is caused by exposing more terrace sites on large particles. The geometric and electronic properties of bimetallic monolayer materials, distinct from monometallic NPs and alloys, constitute a promising platform for the rational design of metal catalysts with superior performance in hydrogenation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic performance of Pt/SiO2 catalysts in the hydrogenation of HNBs.
Fig. 2: Calculated parameters of hydrogenation of p-CNB on platinum surfaces.
Fig. 3: Morphology of Au@Pt core–shell catalysts.
Fig. 4: Electronic properties of platinum monometallic and Au@Pt core–shell catalysts.
Fig. 5: Comparison of catalytic performance of platinum-based catalysts in chemoselective hydrogenation of p-CNB.

Similar content being viewed by others

Data availability

The data generated during this study are included in this article (and its Supplementary Information files) or can be obtained from the authors upon reasonable request.

References

  1. Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. den Breejen, J. P. et al. On the origin of the cobalt particle size effects in Fischer–Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).

    Article  CAS  Google Scholar 

  4. Kuhn, J. N., Huang, W. Y., Tsung, C. K., Zhang, Y. W. & Somorjai, G. A. Structure sensitivity of carbon–nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J. Am. Chem. Soc. 130, 14026–14027 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Reske, R., Mistry, H., Behafarid, F., Cuenya, B. R. & Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 136, 6978–6986 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Englisch, M., Jentys, A. & Lercher, J. A. Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2. J. Catal. 166, 25–35 (1997).

    Article  CAS  Google Scholar 

  7. Cao, S. W., Tao, F., Tang, Y., Li, Y. T. & Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 58, 533–606 (1986).

    Article  CAS  Google Scholar 

  9. Li, L. et al. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4, 222–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, A. Q., Liu, X. Y., Mou, C. Y. & Zhang, T. Understanding the synergistic effects of gold bimetallic catalysts. J. Catal. 308, 258–271 (2013).

    Article  CAS  Google Scholar 

  11. Shi, J. L. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts. Chem. Rev. 113, 2139–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, L. C. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, L. L., Zhou, M. X., Wang, A. Q. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, M. T. et al. Metal–organic frameworks as selectivity regulators for hydrogenation reactions. Nature 539, 76–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Blaser, H. U., Steiner, H. & Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 1, 210–221 (2009).

    Article  CAS  Google Scholar 

  16. Jones, C. R., Liu, Y. Y., Sepai, O., Yan, H. F. & Sabbioni, G. Internal exposure, health effects, and cancer risk of humans exposed to chloronitrobenzene. Environ. Sci. Technol. 40, 387–394 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, P. P. et al. Kinetically stabilized Pd@Pt core–shell octahedral nanoparticles with thin Pt layers for enhanced catalytic hydrogenation performance. ACS Catal. 5, 1335–1343 (2015).

    Article  CAS  Google Scholar 

  18. Liu, M. et al. Design of highly efficient Pt–SnO2 hydrogenation nanocatalysts using Pt@Sn core–shell nanoparticles. ACS Catal. 7, 1583–1591 (2017).

    Article  CAS  Google Scholar 

  19. Cardenas-Lizana, F. et al. Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: role of the support. ACS Catal. 3, 1386–1396 (2013).

    Article  CAS  Google Scholar 

  20. Xu, Q., Liu, X. M., Chen, J. R., Li, R. X. & Li, X. J. Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/γ-Al2O3. J. Mol. Catal. A Chem. 260, 299–305 (2006).

    Article  CAS  Google Scholar 

  21. Cai, S. F. et al. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 3, 608–612 (2013).

    Article  CAS  Google Scholar 

  22. Wang, C. P. et al. Insight into single-atom-induced unconventional size dependence over CeO2-supported Pt catalysts. Chem 6, 752–765 (2020).

    Article  CAS  Google Scholar 

  23. Corma, A. & Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Boronat, M. et al. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J. Am. Chem. Soc. 129, 16230–16237 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Gong, H. H. et al. Atomically precise Ag nanoclusters intercalated in zirconium pyrophosphate for efficient hydrogenation of nitroaromatics. Appl. Catal. A: Gen. 574, 1–9 (2019).

    Article  CAS  Google Scholar 

  26. Chen, Y. Y., Wang, C. A., Liu, H. Y., Qiu, J. S. & Bao, X. H. Ag/SiO2: a novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chem. Commun. 5298–5300 (2005).

  27. Serna, P., Concepcion, P. & Corma, A. Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. 265, 19–25 (2009).

    Article  CAS  Google Scholar 

  28. Makosch, M. et al. Organic thiol modified Pt/TiO2 catalysts to control chemoselective hydrogenation of substituted nitroarenes. ACS Catal. 2, 2079–2081 (2012).

    Article  CAS  Google Scholar 

  29. Cao, L. N. et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2. Nature 565, 631–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, H. W. et al. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 5, 8 (2019).

    Google Scholar 

  31. Kleis, J. et al. Finite size effects in chemical bonding: from small clusters to solids. Catal. Lett. 141, 1067–1071 (2011).

    Article  CAS  Google Scholar 

  32. Lu, J. L. et al. Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat. Commun. 5, 3264 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Baker, L. et al. Nucleation and growth of Pt atomic layer deposition on Al2O3 substrates using (methylcyclopentadienyl)-trimethyl platinum and O2 plasma. J. Appl. Phys. 109, 084333 (2011).

    Article  CAS  Google Scholar 

  34. Le Bars, J., Specht, U., Bradley, J. S. & Blackmond, D. G. A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir 15, 7621–7625 (1999).

    Article  CAS  Google Scholar 

  35. Qiu, L. M., Liu, F., Zhao, L. Z., Yang, W. S. & Yao, J. N. Evidence of a unique electron donor–acceptor property for platinum nanoparticles as studied by XPS. Langmuir 22, 4480–4482 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Bai, L. C. et al. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew. Chem. Int. Ed. 55, 15656–15661 (2016).

    Article  CAS  Google Scholar 

  37. Wang, G. W. et al. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. J. Am. Chem. Soc. 136, 9643–9649 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Singh, J., Lamberti, C. & van Bokhoven, J. A. Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chem. Soc. Rev. 39, 4754–4766 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. de Groot, F. High resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Gallezot, P., Weber, R., Dallabetta, R. A. & Boudart, M. Investigation by X-ray absorption spectroscopy of platinum clusters supported on zeolites. Z. Naturforsch. A Phys. Sci. 34, 40–42 (1979).

    Article  Google Scholar 

  41. Lytle, F. W. Determination of d-band occupancy in pure metals and supported catalysts by measurement of L3 X-ray absorption threshold. J. Catal. 43, 376–379 (1976).

    Article  CAS  Google Scholar 

  42. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, C. L. et al. Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 7, 887–891 (2016).

    Article  CAS  Google Scholar 

  44. Davidson, E. R., Kunze, K. L., Machado, F. B. C. & Chakravorty, S. J. The transition-metal carbonyl bond. Acc. Chem. Res. 26, 628–635 (1993).

    Article  CAS  Google Scholar 

  45. Mott, D. et al. Nanocrystal and surface alloy properties of bimetallic gold–platinum nanoparticles. Nanoscale Res. Lett. 2, 12–16 (2007).

    Article  CAS  Google Scholar 

  46. Rodriguez, J. A. & Kuhn, M. Chemical and electronic properties of Pt in bimetallic surfaces: photoemission and CO-chemisorption studies for Zn/Pt(111). J. Chem. Phys. 102, 4279–4289 (1995).

    Article  CAS  Google Scholar 

  47. Bourgeat-Lami, E. & Lang, J. Encapsulation of inorganic particles by dispersion polymerization in polar media: 2. Effect of silica size and concentration on the morphology of silica–polystyrene composite particles. J. Colloid Interface Sci. 210, 281–289 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, H. W., Wang, C. L., Yan, H., Yi, H. & Lu, J. L. Precisely-controlled synthesis of Au@Pd core–shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J. Catal. 324, 59–68 (2015).

    Article  CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  CAS  Google Scholar 

  51. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 102, 1 (2009).

    Article  CAS  Google Scholar 

  53. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  54. Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  55. Li, L. et al. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4, 222–226 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Methfessel, M. & Paxton, A. T. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616–3621 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.L. acknowledges support from the National Natural Science Foundation of China (22025205, 21673215), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund (DNL201907), the Fundamental Research Funds for the Central Universities (WK2060030029), and Users with Excellence Program of Hefei Science Center CAS (2019HSC-UE016). W.-X.L. acknowledges the National Key R&D Program of China (2018YFA0208603), the National Natural Science Foundation of China (91945302), the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund (DNL201920), the Chinese Academy of Sciences (QYZDJ-SSW-SLH054) and K.C. Wong Education (GJTD-2020-15). Y.L. acknowledges support from the Youth Innovation Promotion Association of the CAS (2020458). Y.Y. acknowledges support from the National Natural Science Foundation of China (22072092, 92045301). S.W. acknowledges the National Key R&D Program of China (2017YFA0402800). The authors all gratefully thank the BL14W1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF) and Supercomputing Center of University of Science and Technology of China and National Supercomputing Center in Zhengzhou.

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed the experiments and W.-X.L. designed the DFT calculations. Q.G. synthesized and characterized the catalysts and evaluated the catalytic performance. C.Z. did the DFT calculations. Y.L. did the HAADF-STEM measurements. E.I.V., X.Z. and Y.Y. did the XPS measurements. H.Y., L.C., H.W., X.Z., X.L. and M.Z. assisted the catalyst characterization and catalytic performance evolution. S.W. performed the XAFS measurements. J.L. and W.-X.L. co-wrote the manuscript, and all the authors contributed to the overall scientific interpretation and edited the manuscript.

Corresponding authors

Correspondence to Wei-Xue Li or Junling Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Catalysis thanks Meenakshisundaram Sankar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, Tables 1–9 and References.

Supplementary Data 1

A zipped file containing the source data of Supplementary Figs. 1–35 and DFT-calculated coordination parameters. Therein, the file Supplementary_Figures_1-7,10,14,21,23,27-35 corresponds to the original data in the supplementary figures, while the file XYZ_coordination_parameters.docx contains the atomic coordinates of the optimized DFT models used in this article.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Q., Zhu, C., Lin, Y. et al. Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat Catal 4, 840–849 (2021). https://doi.org/10.1038/s41929-021-00679-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00679-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing