Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4

Abstract

Solar-light-driven reduction of CO2-to-CH4 is a complex process involving multiple elementary reactions and various by-products. Achieving high CH4 activity and selectivity therefore remain a significant challenge. Here we show a bioinspired photocatalyst with flexible dual-metal-site pairs (DMSPs), which exhibit dynamic self-adaptive behaviour to fit mutative C1 intermediates, achieving CO2-to-CH4 photoreduction. The Cu and Ni DMSPs in their respective single-site forms under flexible microenvironment are incorporated into a metal-organic framework (MOF) to afford MOF-808-CuNi. This dramatically boosts CH4 selectivity up to 99.4% (electron basis) and 97.5% (product basis), and results in a high production rate of 158.7 μmol g−1 h−1 with a sacrificial reagent. Density functional theory calculations reveal that the flexible self-adaptive DMSPs can stabilize various C1 intermediates in multistep elementary reactions, leading to highly selective CO2-to-CH4 process. This work demonstrates that efficient and selective heterogeneous catalytic processes can be achieved by stabilizing reaction intermediates via the self-adaptive DMSP mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic illustration of the self-adaptation concept.
Fig. 2: TEM observations and structural characterization of MOF-808-CuNi.
Fig. 3: Photocatalytic CO2 reduction performance.
Fig. 4: Charge transfer in CO2 photoreduction over MOF-808-CuNi.
Fig. 5: Detection of the reaction mechanism for the photoreduction of CO2 to CH4.
Fig. 6: Self-adaptive Cu and Ni sites for the selective photoreduction of CO2 to CH4.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Leung, J. J. et al. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019).

    CAS  Article  Google Scholar 

  3. 3.

    Rao, H., Schmidt, L. C., Bonin, J. & Robert, M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature 548, 74–77 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Wu, Y. A. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Ding, M., Flaig, R. W., Jiang, H. L. & Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 48, 2783–2828 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Liu, X., Inagaki, S. & Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55, 14924–14950 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Ji, Y. & Luo, Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2(101) surface. ACS Catal. 6, 2018–2025 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Fu, Y. et al. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. 51, 3364–3367 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    Li, D., Kassymova, M., Cai, X., Zang, S.-Q. & Jiang, H.-L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coord. Chem. Rev. 412, 213262 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    White, J. L. et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Wang, L. et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 48, 5310–5349 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Li, X., Yu, J., Jaroniec, M. & Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Corma, A. & Garcia, H. Photocatalytic reduction of CO2 for fuel production: possibilities and challenges. J. Catal. 308, 168–175 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Varghese, O. K., Paulose, M., LaTempa, T. J. & Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731–737 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Guo, Z. et al. Selectivity control of CO versus HCOO production in the visible-light-driven catalytic reduction of CO2 with two cooperative metal sites. Nat. Catal. 2, 801–808 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Wang, Y. et al. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J. Am. Chem. Soc. 140, 14595–14598 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Long, R. et al. Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. J. Am. Chem. Soc. 139, 4486–4492 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Zhao, Y. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl Acad. Sci. USA 115, 2902–2907 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wang, J.-W., Zhong, D.-C. & Lu, T.-B. Artificial photosynthesis: catalytic water oxidation and CO2 reduction by dinuclear non-noble-metal molecular catalysts. Coord. Chem. Rev. 377, 225–236 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Jiao, J. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11, 222–228 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Zhou, H. C. & Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Li, B. et al. Emerging multifunctional metal-organic framework materials. Adv. Mater. 28, 8819–8860 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Li, G., Zhao, S., Zhang, Y. & Tang, Z. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv. Mater. 30, e1800702 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. 28.

    Islamoglu, T. et al. Postsynthetic tuning of metal-organic frameworks for targeted applications. Acc. Chem. Res. 50, 805–813 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Jiao, L., Wang, J. & Jiang, H.-L. Microenvironment modulation in metal-organic framework-based catalysis. Acc. Mater. Res. 2, 327–339 (2021).

    CAS  Article  Google Scholar 

  30. 30.

    Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Guo, X. et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 142, 5709–5721 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Benkovic, S. J. & Hammes-Schiffer, S. A perspective on enzyme catalysis. Science 301, 1196–1202 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Baek, J. et al. Bioinspired metal-organic framework catalysts for selective methane oxidation to methanol. J. Am. Chem. Soc. 140, 18208–18216 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Kuhn, H. J., Braslavsky, S. E. & Schmidt, R. Chemical actinometry (IUPAC Technical Report). Pure Appl. Chem. 76, 2105–2146 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Zhang, H. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. 55, 14310–14314 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Yang, F. et al. Tuning internal strain in metal–organic frameworks via vapor phase infiltration for CO2 reduction. Angew. Chem. Int. Ed. 132, 4602–4610 (2020).

    Article  Google Scholar 

  37. 37.

    Qin, J.-S. et al. Creating well-defined hexabenzocoronene in zirconium metal–organic framework by postsynthetic annulation. J. Am. Chem. Soc. 141, 2054–2060 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Mahmoud, M. E., Audi, H., Assoud, A., Ghaddar, T. H. & Hmadeh, M. Metal-organic framework photocatalyst incorporating bis(4′-(4-carboxyphenyl)-terpyridine)ruthenium(ii) for visible-light-driven carbon dioxide reduction. J. Am. Chem. Soc. 141, 7115–7121 (2019).

    Article  CAS  Google Scholar 

  39. 39.

    An, B. et al. Molecular iridium complexes in metal–organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 139, 17747–17750 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Xu, H.-Q. et al. Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440–13443 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Chen, X. et al. MOFs conferred with transient metal centers for enhanced photocatalytic activity. Angew. Chem. Int. Ed. 59, 17182–17186 (2020).

    CAS  Article  Google Scholar 

  42. 42.

    Hartmann, M., Azuma, N. & Kevan, L. Electron spin resonance and electron spin echo modulation study of Ni(i) in silicoaluminophosphate type 5: adsorbate interactions and evidence for the framework incorporation of Ni(i). J. Phys. Chem. 99, 10988–10994 (1995).

    CAS  Article  Google Scholar 

  43. 43.

    Li, N. et al. Toward high-value hydrocarbon generation by photocatalytic reduction of CO2 in water vapor. ACS Catal. 9, 5590–5602 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Neatu, S., Macia-Agullo, J. A., Concepcion, P. & Garcia, H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 136, 15969–15976 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Yates, J. T. & Cavanagh, R. R. Search for chemisorbed HCO: the interaction of formaldehyde, glyoxal, and atomic hydrogen + CO with Rh. J. Catal. 74, 97–109 (1982).

    CAS  Article  Google Scholar 

  46. 46.

    Koshland, D. E. Jr. & Neet, K. E. The catalytic and regulatory properties of enzymes. Annu. Rev. Biochem. 37, 359–410 (1968).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Peng, Y. et al. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 9, 187 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Furukawa, H. et al. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 136, 4369–4381 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Jrad, A., Abu Tarboush, B. J., Hmadeh, M. & Ahmad, M. Tuning acidity in zirconium-based metal organic frameworks catalysts for enhanced production of butyl butyrate. Appl. Catal. A Gen. 570, 31–41 (2019).

    CAS  Article  Google Scholar 

  50. 50.

    VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS  Article  Google Scholar 

  51. 51.

    Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Article  Google Scholar 

  52. 52.

    Nie, X., Esopi, M. R., Janik, M. J. & Asthagiri, A. Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew. Chem. Int. Ed. 125, 2519–2522 (2013).

    Article  Google Scholar 

  53. 53.

    Krack, M. & Parrinello, M. All-electron ab-initio molecular dynamics. Phys. Chem. Chem. Phys. 2, 2105–2112 (2000).

    CAS  Article  Google Scholar 

  54. 54.

    Capdevila-Cortada, M. & Lopez, N. Entropic contributions enhance polarity compensation for CeO2(100) surfaces. Nat. Mater. 16, 328–334 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Clayborne, A., Chun, H. J., Rankin, R. B. & Greeley, J. Elucidation of pathways for NO electroreduction on Pt(111) from first principles. Angew. Chem. Int. Ed. 127, 8373–8376 (2015).

    Article  Google Scholar 

  56. 56.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  57. 57.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  58. 58.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  59. 59.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  60. 60.

    Ling, C., Niu, X., Li, Q., Du, A. & Wang, J. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 140, 14161–14168 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Mills, G., Jdnsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    CAS  Article  Google Scholar 

  62. 62.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Projects for Fundamental Research and Development of China (grant no. 2016YFB0600901 C.Z.), National Natural Science Foundation of China (grant nos. 22038010 to C.Z., 21978212 to H.H., 21725101 to H.L.J., 22161142001 to H.L.J., 91961119 to D.M. and 21521001 to H.L.J.) and the Science and Technology Plans of Tianjin (grant nos. 18PTSYJC00180 C.Z. and 19PTSYJC00020 H.H.). We thank the 1W1B station for X-ray absorption fine structure measurements at BSRF and Testing Centre of Tiangong University for providing some analytical tests.

Author information

Affiliations

Authors

Contributions

C.Z. and H.L.J. conceived the idea, supervised and directed the project. H.L.J., J.L. and H.H. designed the study. J.L. and H.H. performed the experiments. W.X., X.S. and D.M. performed the theoretical calculations and analysed the DFT data. J.L. and K.S. conducted the DRIFTS and ESR experiments. C.W., L.N. and Y.L. participated in some experiments. C.L. and Y.P. studied the proton source in the photocatalytic product by synchrotron-radiation photoionization–mass spectrometry. J.L., H.H., H.L.J., K.S. and C.Z. cowrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Hai-Long Jiang, Donghai Mei or Chongli Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Julien Bonin, Mohamad Hmadeh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46, Tables 1–15 and Notes 1–12.

Supplementary Video

Video 1 AIMD simulations.

Supplementary Data 1

Data 1 Atomic coordinates of the initial and final configurations of the trajectories in AIMD simulations.

Supplementary Data 2

Data 2 Coordinates for electronic structure.

Source data

Source Data Fig. 2

TEM observations and structural characterization of MOF-808-CuNi.

Source Data Fig. 3

Photocatalytic CO2 reduction performance.

Source Data Fig. 4

Charge transfer in CO2 photoreduction over MOF-808-CuNi.

Source Data Fig. 5

Detection of the reaction mechanism for the photoreduction of CO2 to CH4.

Source Data Fig. 6

Self-adaptive Cu and Ni sites for the selective photoreduction of CO2 to CH4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, H., Xue, W. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat Catal 4, 719–729 (2021). https://doi.org/10.1038/s41929-021-00665-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing