Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation


Rationally manipulating the in situ formed catalytically active surface of catalysts remains a tremendous challenge for a highly efficient water electrolysis. Here we present a cationic redox-tuning method to modulate in situ catalyst leaching and to redirect the dynamic surface restructuring of layered LiCoO2–xClx (x = 0, 0.1 or 0.2), for the electrochemical oxygen evolution reaction (OER). Chlorine doping lowered the potential to trigger in situ cobalt oxidation and lithium leaching, which induced the surface of LiCoO1.8Cl0.2 to transform into a self-terminated amorphous (oxy)hydroxide phase during the OER. In contrast, Cl-free LiCoO2 required higher electrochemical potentials to initiate the in situ surface reconstruction to spinel-type LixCo2O4 and longer cycles to stabilize it. Surface-restructured LiCoO1.8Cl0.2 outperformed many state-of-the-art OER catalysts and demonstrated remarkable stability. This work makes a stride in modulating surface restructuring and in designing superior OER electrocatalysts via manipulating the in situ catalyst leaching.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structural and compositional characterizations.
Fig. 2: Electronic configuration.
Fig. 3: OER performance in 1 M KOH.
Fig. 4: Operando XAFS test.
Fig. 5: Postmortem characterization of cycled LiCoO1.8Cl0.2.
Fig. 6: Theoretical understanding of Cl doping in redirecting surface restructuring.

Data availability

Most data supporting the findings of this study are available from the main text of the article and its Supplementary Information. More data can be obtained from the corresponding authors upon reasonable request.


  1. 1.

    Körner, A., Tam, C., Bennett, S. & Gagné, J. Technology Roadmap—Hydrogen and Fuel Cells (International Energy Agency, 2015).

  2. 2.

    Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2, 1937–1938 (2017).

    CAS  Google Scholar 

  3. 3.

    Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Song, F. et al. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J. Am. Chem. Soc. 140, 7748–7759 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Li, T. et al. Atomic-scale insights into surface species of electrocatalysts in three dimensions. Nat. Catal. 1, 300–305 (2018).

    Google Scholar 

  6. 6.

    Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

    CAS  PubMed  Google Scholar 

  8. 8.

    Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Google Scholar 

  9. 9.

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  PubMed  Google Scholar 

  10. 10.

    Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    PubMed  Google Scholar 

  11. 11.

    Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).

    CAS  PubMed  Google Scholar 

  12. 12.

    Jiang, H., He, Q., Zhang, Y. & Song, L. Structural self-reconstruction of catalysts in electrocatalysis. Acc. Chem. Res. 51, 2968–2977 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Bergmann, A. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat. Catal. 1, 711–719 (2018).

    CAS  Google Scholar 

  14. 14.

    Jiang, H. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 31, 1805127 (2019).

    Google Scholar 

  15. 15.

    Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    CAS  PubMed  Google Scholar 

  17. 17.

    Chung, D. Y. et al. Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction. Nat. Energy 5, 222–230 (2020).

    Google Scholar 

  18. 18.

    Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    CAS  PubMed  Google Scholar 

  19. 19.

    Hua, B. et al. Activating p-blocking centers in perovskite for efficient water splitting. Chem 4, 2902–2916 (2018).

    CAS  Google Scholar 

  20. 20.

    Wang, J. et al. Water splitting with an enhanced bifunctional double perovskite. ACS Catal. 8, 364–371 (2018).

    CAS  Google Scholar 

  21. 21.

    Wu, T. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2, 763–772 (2019).

    CAS  Google Scholar 

  22. 22.

    Zhang, S. et al. Spontaneous delithiation under operando condition triggers formation of an amorphous active layer in spinel cobalt oxides electrocatalyst toward oxygen evolution. ACS Catal. 9, 7389–7397 (2019).

    CAS  Google Scholar 

  23. 23.

    Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015).

    CAS  Google Scholar 

  24. 24.

    Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    CAS  PubMed  Google Scholar 

  25. 25.

    Trotochaud, L., Young, S. L., Ranney, J. K. & Boettcher, S. W. Nickel–iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 136, 6744–6753 (2014).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zheng, X. et al. Electronic structure engineering of LiCoO2 toward enhanced oxygen electrocatalysis. Adv. Energy Mater. 9, 1803482 (2019).

    Google Scholar 

  27. 27.

    Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J. & Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014).

    CAS  PubMed  Google Scholar 

  28. 28.

    Gardner, G. P. et al. Structural requirements in lithium cobalt oxides for the catalytic oxidation of water. Angew. Chem. Int. Ed. 51, 1616–1619 (2012).

    CAS  Google Scholar 

  29. 29.

    Lu, Z. et al. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 5, 4345 (2014).

    CAS  PubMed  Google Scholar 

  30. 30.

    Lu, Z. et al. Identifying the active surfaces of electrochemically tuned LiCoO2 for oxygen evolution reaction. J. Am. Chem. Soc. 139, 6270–6276 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Ceder, G. & Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim. Acta 45, 131–150 (1999).

    CAS  Google Scholar 

  32. 32.

    Meng, Y. S. & Arroyo-de Dompablo, M. E. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2, 589–609 (2009).

    CAS  Google Scholar 

  33. 33.

    Gardner, G. et al. Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides. Energy Environ. Sci. 9, 184–192 (2016).

    CAS  Google Scholar 

  34. 34.

    Lu, X. et al. New insight into the atomic structure of electrochemically delithiated O3-Li(1–x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett. 12, 6192–6197 (2012).

    CAS  PubMed  Google Scholar 

  35. 35.

    Li, G., Zhou, S., Wang, P. & Zhao, J. Halogen-doping in LiCoO2 cathode materials for Li-ion batteries: insights from ab initio calculations. RSC Adv. 5, 107326–107332 (2015).

    CAS  Google Scholar 

  36. 36.

    Kim, B.-J. et al. Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 141, 5231–5240 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Patridge, C. J., Love, C. T., Swider-Lyons, K. E., Twigg, M. E. & Ramaker, D. E. In-situ X-ray absorption spectroscopy analysis of capacity fade in nanoscale-LiCoO2. J. Solid State Chem. 203, 134–144 (2013).

    CAS  Google Scholar 

  38. 38.

    Nakai, I. et al. X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems. J. Power Sources 68, 536–539 (1997).

    CAS  Google Scholar 

  39. 39.

    Yoon, W.-S. et al. Oxygen contribution on Li-ion intercalation−deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy. J. Phys. Chem. B 106, 2526–2532 (2002).

    CAS  Google Scholar 

  40. 40.

    Chen, C.-H. et al. Soft X-ray absorption spectroscopy studies on the chemically delithiated commercial LiCoO2 cathode material. J. Power Sources 174, 938–943 (2007).

    CAS  Google Scholar 

  41. 41.

    Ismail, J., Ahmed, M. F. & Vishnu Kamath, P. Cyclic voltammetric studies of pure and doped films of cobalt hydroxide in 1 M KOH. J. Power Sources 36, 507–516 (1991).

    CAS  Google Scholar 

  42. 42.

    Shan, X. et al. Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nat. Commun. 7, 13370 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Reimers, J. N. & Dahn, J. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091–2097 (1992).

    CAS  Google Scholar 

  44. 44.

    Garcia, B., Farcy, J., Pereira-Ramos, J. & Baffier, N. Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc. 144, 1179–1184 (1997).

    CAS  Google Scholar 

  45. 45.

    Baumung, M., Kollenbach, L., Xi, L. & Risch, M. Undesired bulk oxidation of LiMn2O4 increases overpotential of electrocatalytic water oxidation in lithium hydroxide electrolytes. ChemPhysChem 20, 2981–2988 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Zhou, J. et al. Voltage- and time-dependent valence state transition in cobalt oxide catalysts during the oxygen evolution reaction. Nat. Commun. 11, 1984 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yang, W. & Devereaux, T. P. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. J. Power Sources 389, 188–197 (2018).

    CAS  Google Scholar 

  48. 48.

    Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    CAS  Google Scholar 

  49. 49.

    Grimaud, A., Hong, W. T., Shao-Horn, Y. & Tarascon, J.-M. Anionic redox processes for electrochemical devices. Nat. Mater. 15, 121–126 (2016).

    CAS  PubMed  Google Scholar 

  50. 50.

    Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959–16962 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322–324 (2001).

    CAS  PubMed  Google Scholar 

  52. 52.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Google Scholar 

  53. 53.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  54. 54.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Google Scholar 

  55. 55.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  56. 56.

    Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 23521 (2004).

    Google Scholar 

  57. 57.

    Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    PubMed  Google Scholar 

  58. 58.

    Bajdich, M., García-Mota, M., Vojvodic, A., Nørskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Su, D., Dou, S. & Wang, G. Single crystalline Co3O4 nanocrystals exposed with different crystal planes for Li–O2 batteries. Sci. Rep. 4, 5767 (2014).

    PubMed  PubMed Central  Google Scholar 

  60. 60.

    Reikowski, F. et al. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution. ACS Catal. 9, 3811–3821 (2019).

    CAS  Google Scholar 

  61. 61.

    García-Mota, M. et al. Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C. 116, 21077–21082 (2012).

    Google Scholar 

  62. 62.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  63. 63.

    Mathew, K., Sundararaman, R., Letchworth-Weaver, K., Arias, T. & Hennig, R. G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014).

    PubMed  Google Scholar 

Download references


We acknowledge the National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (no. NRF-2018M1A2A2063868, no. NRF-2019R1A4A1025848, no. NRF-2019M3E6A1065102, no. 2015M3D1A1070639, and no. NRF-2018R1C1B6006854). J. Lim also acknowledges support from the Samsung Science and Technology Foundation under project no. SRFC-MA2002-04. We express thanks to the staff and crew of the Seoul National University Electron Microscopy Facility (NCIRF), Research Institute of Advanced Materials (RIAM), the Institute of Applied Physics of Seoul National University and the Seoul National University Co-operative Flexible Transformative (SOFT) Foundry. J.W. gratefully acknowledges the SNU Science Fellowship (NRF-2019R1A6A1A10073437) funded by the Korean government (MSIT).

Author information




J.W. contributed to the experimental planning, sample preparation, electrochemical experiments, synchrotron-based experiments, data analysis and manuscript preparation. S.-J.K., Y.G., H.S. and Hyungjun Kim conducted the DFT calculations and contributed to manuscript preparation. S.C., K.H.C., J.K. and M.G.K. supported the operando XAFS and ex situ sXAS experiments. J.H. and S.-P.C. conducted the TEM/STEM analysis. S.J. and Hwiho Kim contributed to the ICP-MS and XPS tests. Q.L. and W.Y. performed the RIXS experiments. J. Liu., F.C., X.L. and S.Y. assisted with the sample preparation, electrochemical test, data acquisition and analysis. J. Lim. supervised the project and contributed to the experimental planning, data analysis and manuscript preparation. All authors reviewed and commented on the manuscript before publication.

Corresponding authors

Correspondence to Jian Wang or Shihe Yang or Hyungjun Kim or Jongwoo Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Marcel Risch, Kirsten Winther and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40, Tables 1–11 and Notes 1–7.

Supplementary Data

DFT-optimized structures.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Kim, SJ., Liu, J. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat Catal 4, 212–222 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing