Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper


Electrocatalytic reduction of CO2 into multicarbon (C2+) products is a highly attractive route for CO2 utilization; however, the yield of C2+ products remains low because of the limited C2+ selectivity at high CO2 conversion rates. Here we report a fluorine-modified copper catalyst that exhibits an ultrahigh current density of 1.6 A cm−2 with a C2+ (mainly ethylene and ethanol) Faradaic efficiency of 80% for electrocatalytic CO2 reduction in a flow cell. The C2–4 selectivity reaches 85.8% at a single-pass yield of 16.5%. We show a hydrogen-assisted C–C coupling mechanism between adsorbed CHO intermediates for C2+ formation. Fluorine enhances water activation, CO adsorption and hydrogenation of adsorbed CO to CHO intermediate that can readily undergo coupling. Our findings offer an opportunity to design highly active and selective CO2 electroreduction catalysts with potential for practical application.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electrocatalytic CO2RR performances.
Fig. 2: Morphologies and chemical states of X−Cu catalysts.
Fig. 3: The DFT calculation results.
Fig. 4: Functioning mechanism of halogen on X−Cu catalysts.
Fig. 5: In situ ATR-FTIRS and reaction scheme.

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding authors on reasonable request.


  1. 1.

    Olah, G. A., Prakash, G. K. S. & Goeppert, A. Anthropogenic chemical carbon cycle for a sustainable future. J. Am. Chem. Soc. 133, 12881–12898 (2011).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Centi, G., Quadrelli, E. A. & Perathoner, S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 6, 1711–1731 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    CAS  Article  Google Scholar 

  5. 5.

    Yang, H. et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons. Catal. Sci. Technol. 7, 4580–4598 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Guo, L., Sun, J., Ge, Q. & Tsubaki, N. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons. J. Mater. Chem. A 6, 23244–23262 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Dokania, A., Ramirez, A., Bavykina, A. & Gascon, J. Heterogeneous catalysis for the valorization of CO2: role of bifunctional processes in the production of chemicals. ACS Energy Lett. 4, 167–176 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Zhou, W. et al. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chem. Soc. Rev. 48, 3193–3228 (2019).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Porosoff, M. D., Yan, B. & Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ. Sci. 9, 62–73 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 350–358 (2019).

    Article  CAS  Google Scholar 

  11. 11.

    Tackett, B. M., Gomez, E. & Chen, J. G. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2, 381–386 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Nielsen, D. U., Hu, X. M., Daasbjerg, K. & Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 1, 244–254 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Schouten, K. J. P. et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  15. 15.

    Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  CAS  Google Scholar 

  20. 20.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Zhuang, T. T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2+ hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Ren, D., Ang, B. S. H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn Catalysts. ACS Catal. 6, 8239–8247 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    He, J. et al. High-throughput synthesis of mixed-metal electrocatalysts for CO2 reduction. Angew. Chem. Int. Ed. 56, 6068–6072 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Hoang, T. T. H. et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Varela, A. S., Ju, W., Reier, T. & Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 6, 2136–2144 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Gao, D., Scholten, F. & Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: halide effect. ACS Catal. 7, 5112–5120 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Lv, J. J. et al. A highly porous copper electrocatalyst for carbon dioxide reduction. Adv. Mater. 30, 1803111 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Allen, L. C. Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms. J. Am. Chem. Soc. 111, 9003–9014 (1989).

    CAS  Article  Google Scholar 

  33. 33.

    Gabardo, C. M. et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 11, 2531–2539 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Zhou, H. et al. Fluoroalkyl silane modified silicone rubber/nanoparticle composite: a super durable, robust superhydrophobic fabric coating. Adv. Mater. 24, 2409–2412 (2012).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Chang, X. et al. Tuning Cu/Cu2O interfaces for reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem. Int. Ed. 57, 15415–15419 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Totir, G. G., Chottiner, G. S., Gross, C. L. & Scherson, D. A. XPS studies of the chemical and electrochemical behavior of copper in anhydrous hydrogen fluoride. J. Electroanal. Chem. 532, 151–156 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    Lee, W.-H., Byun, J., Cho, S. K. & Kim, J. J. Effect of halides on Cu electrodeposit film: potential-dependent impurity incorporation. J. Electrochem. Soc. 164, 493–497 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    Kau, L. S., Spira-Solomon, D. J., Penner-Hahn, J. E., Hodgson, K. O. & Solomon, E. I. X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J. Am. Chem. Soc. 109, 6433–6442 (1987).

    CAS  Article  Google Scholar 

  39. 39.

    Huang, Y., Handoko, A. D., Hirunsit, P. & Yeo, B. S. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of *CO coverage on the selective formation of ethylene. ACS Catal. 7, 1749–1756 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Sandberg, R. B., Montoya, J. H., Chan, K. & Nørskov, J. K. CO–CO coupling on Cu facets: coverage, strain and field effects. Surf. Sci. 654, 56–62 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Reuter, K. & Scheffler, M. Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406 (2001).

    Article  CAS  Google Scholar 

  42. 42.

    Montoya, J. H., Peterson, A. A. & Nørskov, J. K. Insights into C–C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    CAS  Article  Google Scholar 

  43. 43.

    Gao, D. et al. Selective CO2 electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. Angew. Chem. Int. Ed. 58, 17047–17053 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Ma, W. et al. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 10, 892 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Staszak-Jirkovský, J. et al. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–203 (2015).

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Cheng, T., Xiao, H. & Goddard, W. A. III Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J. Am. Chem. Soc. 138, 13802–13805 (2016).

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Wuttig, A. et al. Tracking a common surface-bound intermediate during CO2-to-fuels catalysis. ACS Cent. Sci. 2, 522–528 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Krauth, O., Fahsold, G., Magg, N. & Pucci, A. Anomalous infrared transmission of adsorbates on ultrathin metal films: Fano effect near the percolation threshold. J. Chem. Phys. 113, 6330–6333 (2000).

    CAS  Article  Google Scholar 

  52. 52.

    Lu, G. Q. et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN, and poly (o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: abnormal infrared effects (AIREs). Langmuir 16, 778–786 (2000).

    CAS  Article  Google Scholar 

  53. 53.

    Lu, X. & Zhao, C. Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  55. 55.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  56. 56.

    Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  58. 58.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Pack, J. D. & Monkhorst, H. J. Special points for Brillonln-zone integrations—a reply. Phys. Rev. B 16, 1748–1749 (1977).

    Article  Google Scholar 

  60. 60.

    Wang, H. & Liu, Z. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 130, 10996–11004 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Köhler, L. & Kresse, G. Density functional study of CO on Rh (111). Phys. Rev. B 70, 165405 (2004).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of the Ministry of Science and Technology of China (no. 2017YFB0602201), the National Natural Science Foundation of China (nos. 21690082, 91545203, 21503176 and 21802110), We thank the staff at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facilities (SSRF) for assistance with the extended X-ray absorption fine structure measurements.

Author information




W.M. and S.X. performed most of the experiments and analysed the experimental data. T.L. and Q.F. performed computational studies and analysed the computational data. J.Y conducted ATR-FTIRS measurements and analysed the results. F.S. and Z.J. conducted XAS measurements and analysed the results. Q.Z. analysed all the data and co-wrote the paper. J.C. guided the computational work, analysed all the data and co-wrote the paper. Y.W. designed and guided the study, and co-wrote the paper. All of the authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Qinghong Zhang or Jun Cheng or Ye Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–3, Figs. 1–38, Tables 1–8 and References.

Supplementary Data 1

The atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Xie, S., Liu, T. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. Nat Catal 3, 478–487 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing