Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis


In contrast with abundant methods for the asymmetric functionalization of alkyl radicals to generate stereogenic centres at reaction sites, catalytic enantioselective desymmetrizing functionalization of alkyl radicals for forging multiple stereocentres—including positions that are remote from the reaction sites—with both high enantio- and diastereoselectivity remains largely unexplored. The major challenge for such reactions is the high reactivity of open-shell alkyl radicals. Here, we describe a strategy to address this challenge: the use of Cu(ii) phosphate to immediately associate with the in situ-generated reactive alkyl radical species, creating a compact and confined chiral microenvironment for effective stereocontrol. With this strategy, we have developed a general and efficient catalytic enantioselective desymmetrizing functionalization of alkene-tethered 1,3-diols. It provides various tetrahydrofurans and analogues bearing multiple stereocentres with remarkably high levels of enantio- and diastereocontrol. Density functional theory calculations and mechanistic experiments revealed a reaction mechanism involving an enantiodetermining outer-sphere C–O bond formation step.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Motivation and development of catalytic enantioselective desymmetrizing functionalization of alkyl radicals.
Fig. 2: Substrate scope to access two congested quaternary stereocentres with different radicals.
Fig. 3: Mechanistic studies of the catalytic enantioselective desymmetrizing functionalization reactions involving radical species.
Fig. 4: DFT-computed free energy profile of the favoured C–O bond formation process.
Fig. 5: DFT-computed enantioselectivity-determining C–O bond formation transition states.

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, mechanistic studies and DFT calculations, high-performance liquid chromatography spectra, NMR spectra and mass spectrometry are available in the Supplementary Information. Crystallographic data for compounds 3A′, 6 and 8A are available free of charge from the Cambridge Crystallographic Data Centre under reference numbers 1916711 (3A′), 1922870 (6) and 1916714 (8A). All other data are available from the authors upon reasonable request.


  1. 1.

    Sibi, M. P. & Porter, N. A. Enantioselective free radical reactions. Acc. Chem. Res. 32, 163–171 (1999).

    CAS  Google Scholar 

  2. 2.

    Brimioulle, R. & Bach, T. Enantioselective Lewis acid catalysis of intramolecular enone [2+2] photocycloaddition reactions. Science 342, 840–843 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Chemler, S. R., Karyakarte, S. D. & Khoder, Z. M. Stereoselective and regioselective synthesis of heterocycles via copper-catalyzed additions of amine derivatives and alcohols to alkenes. J. Org. Chem. 82, 11311–11325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Zhu, R. & Buchwald, S. L. Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes. Angew. Chem. Int. Ed. 52, 12655–12658 (2013).

    CAS  Google Scholar 

  8. 8.

    Jiang, H., Lang, K., Lu, H., Wojtas, L. & Zhang, X. P. Asymmetric radical bicyclization of allyl azidoformates via cobalt(ii)-based metalloradical catalysis. J. Am. Chem. Soc. 139, 9164–9167 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hao, W., Harenberg, J. H., Wu, X., MacMillan, S. N. & Lin, S. Diastereo- and enantioselective formal [3 + 2] cycloaddition of cyclopropyl ketones and alkenes via Ti-catalyzed radical redox relay. J. Am. Chem. Soc. 140, 3514–3517 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Beeson, T. D., Mastracchio, A., Hong, J.-B., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Hashimoto, T., Kawamata, Y. & Maruoka, K. An organic thiyl radical catalyst for enantioselective cyclization. Nat. Chem. 6, 702–705 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Arceo, E., Jurberg, I. D., Álvarez-Fernández, A. & Melchiorre, P. Photochemical activity of a key donor–acceptor complex can drive stereoselective catalytic α-alkylation of aldehydes. Nat. Chem. 5, 750–756 (2013).

    CAS  PubMed  Google Scholar 

  14. 14.

    Rono, L. J., Yayla, H. G., Wang, D. Y., Armstrong, M. F. & Knowles, R. R. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J. Am. Chem. Soc. 135, 17735–17738 (2013).

    CAS  PubMed  Google Scholar 

  15. 15.

    Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Science 344, 392–396 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    CAS  PubMed  Google Scholar 

  18. 18.

    Fu, M.-C., Shang, R., Zhao, B., Wang, B. & Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 363, 1429–1434 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    CAS  PubMed  Google Scholar 

  20. 20.

    Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp 3)‒H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Metrano, A. J. & Miller, S. J. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc. Chem. Res. 52, 199–215 (2019).

    CAS  PubMed  Google Scholar 

  22. 22.

    Ye, K.-Y., McCallum, T. & Lin, S. Bimetallic radical redox-relay catalysis for the isomerization of epoxides to allylic alcohols. J. Am. Chem. Soc. 141, 9548–9554 (2019).

    CAS  PubMed  Google Scholar 

  23. 23.

    Zhao, Y. & Weix, D. J. Enantioselective cross-coupling of meso-epoxides with aryl halides. J. Am. Chem. Soc. 137, 3237–3240 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Gansäuer, A., Fan, C.-A., Keller, F. & Karbaum, P. Regiodivergent epoxide opening: a concept in stereoselective catalysis beyond classical kinetic resolutions and desymmetrizations. Chem. Eur. J. 13, 8084–8090 (2007).

    PubMed  Google Scholar 

  25. 25.

    Stache, E. E., Rovis, T. & Doyle, A. G. Dual nickel- and photoredox-catalyzed enantioselective desymmetrization of cyclic meso-anhydrides. Angew. Chem. Int. Ed. 56, 3679–3683 (2017).

    CAS  Google Scholar 

  26. 26.

    Bovino, M. T. et al. Enantioselective copper-catalyzed carboetherification of unactivated alkenes. Angew. Chem. Int. Ed. 53, 6383–6387 (2014).

    CAS  Google Scholar 

  27. 27.

    Milan, M., Bietti, M. & Costas, M. Enantioselective aliphatic C–H bond oxidation catalyzed by bioinspired complexes. Chem. Commun. 54, 9559–9570 (2018).

    CAS  Google Scholar 

  28. 28.

    Curran, D. P., Geib, S. J. & Lin, C.-H. Group selective radical cyclizations with Oppolzer’s camphor sultam. Tetrahedron Asymmetry 5, 199–202 (1994).

    CAS  Google Scholar 

  29. 29.

    Villar, F., Kolly-Kovac, T., Equey, O. & Renaud, P. Highly stereoselective radical cyclization of haloacetals controlled by the acetal center. Chem. Eur. J. 9, 1566–1577 (2003).

    CAS  PubMed  Google Scholar 

  30. 30.

    Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 9, 1198–1204 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wang, Z., Yin, H. & Fu, G. C. Catalytic enantioconvergent coupling of secondary and tertiary electrophiles with olefins. Nature 563, 379–383 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lin, J.-S. et al. A dual-catalytic strategy to direct asymmetric radical aminotrifluoromethylation of alkenes. J. Am. Chem. Soc. 138, 9357–9360 (2016).

    CAS  PubMed  Google Scholar 

  34. 34.

    Dong, X.-Y. et al. A general asymmetric copper-catalysed Sonogashira C(sp 3)–C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    CAS  PubMed  Google Scholar 

  36. 36.

    Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat. Chem. 4, 603–614 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  38. 38.

    Wang, Z., Chen, Z. & Sun, J. Catalytic asymmetric nucleophilic openings of 3-substituted oxetanes. Org. Biomol. Chem. 12, 6028–6032 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    CAS  PubMed  Google Scholar 

  40. 40.

    Kauffman, C. A., Malani, A. N., Easley, C. & Kirkpatrick, P. Posaconazole. Nat. Rev. Drug Discov. 6, 183–184 (2007).

    CAS  PubMed  Google Scholar 

  41. 41.

    Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev. 2, 371–390 (2003).

    CAS  Google Scholar 

  42. 42.

    Xiao, W.-L. et al. Rubriflordilactones A and B, two novel bisnortriterpenoids from Schisandra rubriflora and their biological activities. Org. Lett. 8, 991–994 (2006).

    CAS  PubMed  Google Scholar 

  43. 43.

    Toti, K. S. et al. Synthesis of an apionucleoside family and discovery of a prodrug with anti-HIV activity. J. Org. Chem. 79, 5097–5112 (2014).

    CAS  PubMed  Google Scholar 

  44. 44.

    Lorente, A., Lamariano-Merketegi, J., Albericio, F. & Álvarez, M. Tetrahydrofuran-containing macrolides: a fascinating gift from the deep sea. Chem. Rev. 113, 4567–4610 (2013).

    CAS  PubMed  Google Scholar 

  45. 45.

    Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Vogl, E. M., Gröger, H. & Shibasaki, M. Towards perfect asymmetric catalysis: additives and cocatalysts. Angew. Chem. Int. Ed. 38, 1570–1577 (1999).

    CAS  Google Scholar 

  47. 47.

    Hong, L., Sun, W., Yang, D., Li, G. & Wang, R. Additive effects on asymmetric catalysis. Chem. Rev. 116, 4006–4123 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Cheng, Y.-F., Dong, X.-Y., Gu, Q.-S., Yu, Z.-L. & Liu, X.-Y. Achiral pyridine ligand-enabled enantioselective radical oxytrifluoromethylation of alkenes with alcohols. Angew. Chem. Int. Ed. 56, 8883–8886 (2017).

    CAS  Google Scholar 

  49. 49.

    Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chen, X.-H., Zhang, W.-Q. & Gong, L.-Z. Asymmetric organocatalytic three-component 1,3-dipolar cycloaddition: control of stereochemistry via a chiral Brønsted acid activated dipole. J. Am. Chem. Soc. 130, 5652–5653 (2008).

    CAS  PubMed  Google Scholar 

  51. 51.

    Ni, C., Hu, M. & Hu, J. Good partnership between sulfur and fluorine: sulfur-based fluorination and fluoroalkylation reagents for organic synthesis. Chem. Rev. 115, 765–825 (2015).

    CAS  PubMed  Google Scholar 

  52. 52.

    Aho, J. E., Pihko, P. M. & Rissa, T. K. Nonanomeric spiroketals in natural products: structures, sources, and synthetic strategies. Chem. Rev. 105, 4406–4440 (2005).

    CAS  PubMed  Google Scholar 

  53. 53.

    Charpentier, J., Früh, N. & Togni, A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem. Rev. 115, 650–682 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Gephart, R. T. et al. Reaction of CuI with dialkyl peroxides: CuII-alkoxides, alkoxy radicals, and catalytic C–H etherification. J. Am. Chem. Soc. 134, 17350–17353 (2012).

    CAS  PubMed  Google Scholar 

  55. 55.

    Reid, J. P., Simón, L. & Goodman, J. M. A practical guide for predicting the stereochemistry of bifunctional phosphoric acid catalyzed reactions of imines. Acc. Chem. Res. 49, 1029–1041 (2016).

    CAS  PubMed  Google Scholar 

  56. 56.

    Duarte, F. & Paton, R. S. Molecular recognition in asymmetric counteranion catalysis: understanding chiral phosphate-mediated desymmetrization. J. Am. Chem. Soc. 139, 8886–8896 (2017).

    CAS  PubMed  Google Scholar 

  57. 57.

    Wheeler, S. E. Understanding substituent effects in noncovalent interactions involving aromatic rings. Acc. Chem. Res. 46, 1029–1038 (2013).

    CAS  PubMed  Google Scholar 

  58. 58.

    Lefebvre, C. et al. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 19, 17928–17936 (2017).

    CAS  PubMed  Google Scholar 

Download references


Financial support from the National Natural Science Foundation of China (21722203 and 21831002 to X.-Y.L., 21702182 and 2187308 to X.H. and 21801116 to Z.-L.L.), Shenzhen Special Funds (JCYJ20170412152435366 and JCYJ20170307105638498 to X.-Y.L.), Shenzhen Nobel Prize Scientists Laboratory Project (C17783101 to X.-Y.L.) and ‘Fundamental Research Funds for the Central Universities’ (2019QNA3009, X.H.) are gratefully acknowledged. Calculations were performed on the high-performance computing system at the Department of Chemistry, Zhejiang University.

Author information




X.-Y.L. conceived of and supervised the project. Y.-F.C., Z.-L.Y., J.W., Q.-S.G. and Z.-L.L. designed the experiments and analysed the data. Y.-F.C., Z.-L.Y., J.W., J.-Q.B., H.-T.W. and X.-J.W. performed the experiments. J.-R.L. and X.H. designed and performed the DFT calculations. X.-Y.L., X.H. and Q.-S.G. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xin-Yuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, Tables 1–4, methods and references.

Supplementary Data 1

Cartesian coordinates for calculated species.

Compound 3A′

Crystallographic data for compound 3A′.

Compound 6

Crystallographic data for compound 6.

Compound 8A

Crystallographic data for compound 8A.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Liu, J., Gu, Q. et al. Catalytic enantioselective desymmetrizing functionalization of alkyl radicals via Cu(i)/CPA cooperative catalysis. Nat Catal 3, 401–410 (2020).

Download citation

Further reading