Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Simultaneous oxidative and reductive reactions in one system by atomic design

Abstract

Single-atom catalysts often exhibit unexpected catalytic activity for many important chemical and biological reactions with respect to their bulk counterparts, and have been recognized as potential substitutes for natural enzymes. Here we report a biomimetic composite, yolk–shell Pd1@Fe1, that features two compatible single-atom systems with atomically dispersed Fe1 sites in a N-doped carbon shell and Pd1 sites in a yolk derived from a metal–organic framework. Directly utilizing the O2 and H2 sources generated on-site from the electrocatalytic overall water splitting, the as-synthesized yolk–shell Pd1@Fe1 could simultaneously catalyse nitroaromatic hydrogenation and alkene epoxidation reactions and lead to a cascade synthesis of amino alcohols. Our findings provide a versatile strategy to integrate different single metal sites within one system to allow the continuous and easy synthesis of complex compounds for various challenging reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of yolk–shell Pd1@Fe1.
Fig. 2: Chemical state and coordination information of the yolk–shell Pd1@Fe1.
Fig. 3: Illustration of the active site compartmentalization and reaction scheme.
Fig. 4: Production of 1-phenyl-2-(phenylamino)ethanol using CSAS in a homemade device.
Fig. 5: Substrate scope.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Lubitz, W., Ogata, H., Rudiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Wodrich, M. D. & Hu, X. Natural inspirations for metal–ligand cooperative catalysis. Nat. Rev. Chem. 2, 0099 (2017).

    Article  CAS  Google Scholar 

  4. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  5. Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kumaravel, V. et al. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 5, 486–519 (2020).

    Article  CAS  Google Scholar 

  7. Pan, H.-J. et al. A catalytically active [Mn]-hydrogenase incorporating a non-native metal cofactor. Nat. Chem. 11, 669–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhagidamodaran, A. et al. Why copper is preferred over iron for oxygen activation and reduction in haem–copper oxidases. Nat. Chem. 9, 257–263 (2017).

    Article  CAS  Google Scholar 

  9. Huang, L. et al. Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y. et al. Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2, 1242–1264 (2018).

    Article  CAS  Google Scholar 

  13. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    Article  CAS  Google Scholar 

  14. Liu, P. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–800 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, L. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 7, 14036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zitolo, A. et al. Identification of catalytic sites in cobalt–nitrogen–carbon materials for the oxygen reduction reaction. Nat. Commun. 8, 957 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kunwar, D. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019).

    Article  CAS  Google Scholar 

  18. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Zhao, Y. et al. Two-step carbothermal welding to access atomically dispersed Pd1 on three-dimensional zirconia nanonet for direct indole synthesis. J. Am. Chem. Soc. 141, 10590–10594 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Wong, A. et al. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 358, 1427–1430 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, H. et al. Highly doped and exposed Cu(i)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy Environ. Sci. 9, 3736–3745 (2016).

    Article  CAS  Google Scholar 

  22. Gao, G., Jiao, Y., Waclawik, E. R. & Du, A. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem. Int. Ed. 56, 9312–9317 (2017).

    Article  CAS  Google Scholar 

  24. Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, W. et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  28. Suenaga, K. et al. Radially modulated nitrogen distribution in CNx canotubular structures prepared by CVD using Ni phthalocyanine. Chem. Phys. Lett. 316, 365–372 (2000).

    Article  CAS  Google Scholar 

  29. Li, Z. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host−guest strategy. Nat. Chem. 12, 764–772 (2020).

    Article  PubMed  CAS  Google Scholar 

  30. Gu, J. et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Z. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 10, 1657 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wang, X. et al. Uncoordinated amine groups of metal–organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 139, 9419–9422 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Yao, Y. et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 14, 851–445 857 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, L. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018).

    Article  CAS  Google Scholar 

  39. Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Genovese, C. et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat. Commun. 9, 935 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sabater, S. et al. Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. ACS Catal. 4, 2038–2047 (2014).

    Article  CAS  Google Scholar 

  42. Feng, X. et al. Engineering a highly defective stable UiO-66 with tunable Lewis–Brønsted acidity: the role of the hemilabile linker. J. Am. Chem. Soc. 142, 3174–3183 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China 2017YFA (0208300 and 0700104), the National Natural Science Foundation of China (21522107, 21671180, 21521091, U1463202 and 21873050). We thank the photoemission endstations BL1W1B at the Beijing Synchrotron Radiation Facility (BSRF), BL14W1 at the Shanghai Synchrotron Radiation Facility (SSRF) and BL10B and BL11U in the National Synchrotron Radiation Laboratory (NSRL) for help in the characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. developed the idea and designed experiments. Y.Z. and H.Z. conceived and performed most of the experiments. Y.Q., C.X., Z.X., Q.Z., F.Z., X.M., W.W., M.C., Y.X., X. Lin, H.W. and W.H. participated in some of the experimental work. X.Z. and Y. Li performed the theoretical calculations. L.G., J.L. and Y. Lin performed the aberration-corrected STEM characterizations. X. Liu, W.C., Z.J., L.Z., T.Y., J.D. and S.W. carried out the XFAS characterizations. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yafei Li or Yuen Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, notes and Tables 1–4.

Source data

Source Data Fig. 1

XRD data for Fig. 2a.

Source Data Fig. 2

57Fe Mössbauer spectra of yolk–shell Pd1@Fe1.

Source Data Fig. 3

EXAFS of single-atom Pd1 sites and Fe1 sites.

Source Data Fig. 4

FT-EXAFS spectra for Fig.2d.

Source Data Fig. 5

The Bader charge of Fe1-CxN4–x (0 ≤ x ≤ 4) and Pd1-CyN4–y (0 ≤ y ≤ 4) structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhou, H., Zhu, X. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat Catal 4, 134–143 (2021). https://doi.org/10.1038/s41929-020-00563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00563-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing