Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemically induced nickel catalysis for oxygenation reactions with water

Abstract

Nickel has been found in some metalloproteins that execute catalytic aerobic oxygenation reactions in which nickel–dioxygen species are proposed as the key catalytic species. Thus, various nickel–dioxygen complexes have been prepared for biomimetic oxygenation reactions over the past 50 years, but they have often been used stoichiometrically rather than catalytically. The typical inertness of Ni(ii) complexes toward O2 poses a considerable challenge for their application in catalytic aerobic oxygenation. Here, we report a strategy to enable catalytic oxygenation with a simple Ni(ii)–bipyridine complex in which electrochemistry is employed to drive the cascade-activation process for the generation of both active Ni(ii)–peroxo species and O2 for the subsequent oxygenation reaction. We anticipate that this strategy will inspire the development of efficient nickel-catalysed aerobic oxygenations and promote the exploration of transition-metal-based oxidation chemistry in combination with electrochemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motivation and reaction development.
Fig. 2: Oxygenation of phosphine substrate and gram-scale synthesis experiment.
Fig. 3: Mechanistic studies.
Fig. 4: Proposed mechanism.

Similar content being viewed by others

Data availability

The data that support the findings of this study, including experimental procedures and compound characterization, are available in the online version of this paper in the accompanying Supplementary Information, or available from the authors upon reasonable request.

References

  1. Barondeau, D. P., Kassmann, C. J., Bruns, C. K., Tainer, J. A. & Getzoff, E. D. Nickel superoxide dismutase structure and mechanism. Biochemistry 43, 8038–8047 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Jeoung, J.-H., Nianios, D., Fetzner, S. & Dobbek, H. Quercetin 2,4-dioxygenase activates dioxygen in a side-on O2–Ni complex. Angew. Chem. Int. Ed. 55, 3281–3284 (2016).

    Article  CAS  Google Scholar 

  3. Cho, J. et al. Geometric and electronic structure and reactivity of a mononuclear ‘side-on’ nickel(III)–peroxo complex. Nat. Chem. 1, 568–572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho, J. et al. Mononuclear nickel(II)-superoxo and nickel(III)-peroxo complexes bearing a common macrocyclic TMC ligand. Chem. Sci. 4, 1502–1508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Panda, C. et al. Nucleophilic versus electrophilic reactivity of bioinspired superoxido nickel(II) complexes. Angew. Chem. Int. Ed. 57, 14883–14887 (2018).

    Article  CAS  Google Scholar 

  6. Fujita, K. et al. A monomeric nickel–dioxygen adduct derived from a nickel(I) complex and O2. Inorg. Chem. 43, 3324–3326 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Yao, S., Bill, E., Milsmann, C., Wieghardt, K. & Driess, M. A ‘side-on’ superoxonickel complex [LNi(O2)] with a square-planar tetracoordinate nickel(II) center and its conversion into [LNi(μ-OH)2NiL]. Angew. Chem. Int. Ed. 47, 7110–7113 (2008).

    Article  CAS  Google Scholar 

  8. Yao, S. et al. O–O bond activation in heterobimetallic peroxides: synthesis of the peroxide [LNi(μ,η22-O2)K] and its conversion into a bis(μ-hydroxo) nickel zinc complex. Angew. Chem. Int. Ed. 48, 8107–8110 (2009).

    Article  CAS  Google Scholar 

  9. Pietrzyk, P., Podolska, K., Mazur, T. & Sojka, Z. Heterogeneous binding of dioxygen: EPR and DFT evidence for side-on nickel(II)–superoxo adduct with unprecedented magnetic structure hosted in MFI zeolite. J. Am. Chem. Soc. 133, 19931–19943 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Duan, P.-C., Manz, D.-H., Dechert, S., Demeshko, S. & Meyer, F. Reductive O2 binding at a dihydride complex leading to redox interconvertible μ-1,2-peroxo and μ-1,2-superoxo dinickel(II) intermediates. J. Am. Chem. Soc. 140, 4929–4939 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Holze, P. et al. Activation of dioxygen at a Lewis acidic nickel(II) complex: characterization of a metastable organoperoxide complex. Angew. Chem. Int. Ed. 56, 2307–2311 (2017).

    Article  CAS  Google Scholar 

  12. Otsuka, S., Nakamura, A. & Tatsuno, Y. Oxygen complexes of nickel and palladium. Formation, structure, and reactivities. J. Am. Chem. Soc. 91, 6994–6999 (1969).

    Article  CAS  Google Scholar 

  13. Lanci, M. P., Brinkley, D. W., Stone, K. L., Smirnov, V. V. & Roth, J. P. Structures of transition states in metal-mediated O2-activation reactions. Angew. Chem. Int. Ed. 44, 7273–7276 (2005).

    Article  CAS  Google Scholar 

  14. Noh, H. & Cho, J. Synthesis, characterization and reactivity of non-heme 1st row transition metal-superoxo intermediates. Coord. Chem. Rev. 382, 126–144 (2019).

    Article  CAS  Google Scholar 

  15. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Malapit, C. A., Bour, J. R., Brigham, C. E. & Sanford, M. S. Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides. Nature 563, 100–104 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaw, M. H., Shurtleff, V. W., Terrett, J. A., Cuthbertson, J. D. & MacMillan, D. W. C. Native functionality in triple catalytic cross-coupling: sp3 C–H bonds as latent nucleophiles. Science 352, 1304–1308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiedler, A. T. & Fisher, A. A. Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. J. Biol. Inorg. Chem. 22, 407–424 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Yao, S. & Driess, M. Lessons from isolable nickel(I) precursor complexes for small molecule activation. Acc. Chem. Res. 45, 276–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Zimmermann, P. & Limberg, C. Activation of small molecules at nickel(I) moieties. J. Am. Chem. Soc. 139, 4233–4242 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Corona, T. & Company, A. Spectroscopically characterized synthetic mononuclear nickel–oxygen species. Chem. Eur. J. 22, 13422–13429 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cardoso, D. S. P., Šljukić, B., Santos, D. M. F. & Sequeira, C. A. C. Organic electrosynthesis: from laboratorial practice to industrial applications. Org. Process Res. Dev. 21, 1213–1226 (2017).

    Article  CAS  Google Scholar 

  26. Jiang, Y., Xu, K. & Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 118, 4485–4540 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article  CAS  Google Scholar 

  28. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Article  PubMed  Google Scholar 

  29. Tang, S., Liu, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4, 27–45 (2018).

    Article  CAS  Google Scholar 

  30. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Badalyan, A. & Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535, 406–410 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sauermann, N., Meyer, T. H., Tian, C. & Ackermann, L. Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J. Am. Chem. Soc. 139, 18452–18455 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, L. et al. Photoelectrocatalytic arene C–H amination. Nat. Catal. 2, 366–373 (2019).

    Article  CAS  Google Scholar 

  37. Huang, X., Zhang, Q., Lin, J., Harms, K. & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).

    Article  CAS  Google Scholar 

  38. Yang, Q.-L. et al. Palladium-catalyzed C(sp3)–H oxygenation via electrochemical oxidation. J. Am. Chem. Soc. 139, 3293–3298 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Cai, C.-Y. & Xu, H.-C. Dehydrogenative reagent-free annulation of alkenes with diols for the synthesis of saturated O-heterocycles. Nat. Commun. 9, 3511–3517 (2018).

    Article  CAS  Google Scholar 

  40. Laudadio, G. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 141, 5664–5668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Complete electron economy by pairing electrolysis with hydrogenation. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  42. Hickey, D. P. et al. Investigating the role of ligand electronics on stabilizing electrocatalytically relevant low-valent Co(I) intermediates. J. Am. Chem. Soc. 141, 1382–1392 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Buckley, B. R. et al. Harnessing applied potential to oxidation in water. Green. Chem. 14, 2221–2225 (2012).

    Article  CAS  Google Scholar 

  44. Laudadio, G. et al. An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green. Chem. 19, 4061–4066 (2017).

    Article  CAS  Google Scholar 

  45. Barnett, S. M., Goldberg, K. I. & Mayer, J. M. A soluble copper–bipyridine water-oxidation electrocatalyst. Nat. Chem. 4, 498–502 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Fan, K. et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981–11989 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balaraman, E., Khaskin, E., Leitus, G. & Milstein, D. Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nat. Chem. 5, 122–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Kawamata, Y. et al. Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism, and applications. J. Am. Chem. Soc. 141, 6392–6402 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liang, Y., Lin, F., Adeli, Y., Jin, R. & Jiao, N. Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2-dichloroethane. Angew. Chem. Int. Ed. 58, 4566–4570 (2019).

    Article  CAS  Google Scholar 

  50. Liang, Y.-F. & Jiao, N. Oxygenation via C–H/C–C bond activation with molecular oxygen. Acc. Chem. Res. 50, 1640–1653 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Imada, Y., Okada, Y., Noguchi, K. & Chiba, K. Selective functionalization of styrenes with oxygen using different electrode materials: olefin cleavage and synthesis of tetrahydrofuran derivatives. Angew. Chem. Int. Ed. 58, 125–129 (2019).

    Article  CAS  Google Scholar 

  52. Company, A., Yao, S., Ray, K. & Driess, M. Dioxygenase-like reactivity of an isolable superoxo–nickel(II) complex. Chem. Eur. J. 16, 9669–9675 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Kieber-Emmons, M. T. & Riordan, C. G. Dioxygen activation at monovalent nickel. Acc. Chem. Res. 40, 618–625 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 21632001, 21772002 and 81821004), the Drug Innovation Major Project (2018ZX09711-001) and the Open Research Fund of the Shanghai Key Laboratory of Green Chemistry and Chemical Processes are greatly appreciated. We thank X.-Z. Wang and L.-Z. Wu at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, for instrumental help for the detection of H2. We also thank J. Peng in this group for reproducing the results of 2o and 2q.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and N.J. conceived and designed the experiments; Y.L. carried out most experiments; S. Shi and R.J. carried out some control experiments; S. Shi reproduced the results of 2e and 2g; Y.L., S. Shi, R.J., X.Q., J.W., H.T., X.J., S. Song and N.J. analysed the data; X.S., Y.L. and N.J. analysed the ESI-HRMS data; Y.L. and N.J. wrote the manuscript; N.J. directed the project.

Corresponding author

Correspondence to Ning Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Markus Kärkäs and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, discussion, Table 1 and refs. 1–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Shi, SH., Jin, R. et al. Electrochemically induced nickel catalysis for oxygenation reactions with water. Nat Catal 4, 116–123 (2021). https://doi.org/10.1038/s41929-020-00559-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-00559-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing