Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions

A Publisher Correction to this article was published on 09 November 2020

This article has been updated


Complex organic molecules are of great importance to research and industrial chemistry and typically synthesized from smaller building blocks by multistep reactions. The ability to perform multiple (distinct) transformations in a single reactor would greatly reduce the number of manipulations required for chemical manufacturing, and hence the development of multifunctional catalysts for such one-pot reactions is highly desirable. Here we report the synthesis of a hierarchically porous framework, in which the macropores are selectively functionalized with a sulfated zirconia solid acid coating, while the mesopores are selectively functionalized with MgO solid base nanoparticles. Active site compartmentalization and substrate channelling protects base-catalysed triacylglyceride transesterification from poisoning by free fatty acid impurities (even at 50 mol%), and promotes the efficient two-step cascade deacetalization-Knoevenagel condensation of dimethyl acetals to cyanoates.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Substrate channelling in hierarchical pore networks.
Fig. 2: Synthetic route to a spatially orthogonal, acid–base hierarchically porous framework.
Fig. 3: Spatial distribution of Mg and Zr within a hierarchically porous SBA-15 framework.
Fig. 4: Antagonistic reactions in biodiesel production.
Fig. 5: Substrate channelling: esterification and transesterification over acid–base catalysts.
Fig. 6: NMR relaxation-exchange correlation data.
Fig. 7: Cascade deacetalization and Knoevenagel condensation over acid–base catalysts.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 09 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Climent, M. J., Corma, A. & Iborra, S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem. Rev. 111, 1072–1133 (2010).

    PubMed  Google Scholar 

  2. 2.

    Climent, M. J., Corma, A. & Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv. 2, 16–58 (2012).

    CAS  Google Scholar 

  3. 3.

    Kulkarni, M. G. & Dalai, A. K. Waste cooking oil—an economical source for biodiesel: a review. Ind. Eng. Chem. Res. 45, 2901–2913 (2006).

    CAS  Google Scholar 

  4. 4.

    Biju, A. T., Wurz, N. E. & Glorius, F. N-Heterocyclic carbene-catalyzed cascade reaction involving the hydroacylation of unactivated alkynes. J. Am. Chem. Soc. 132, 5970–5971 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Enders, D., Huettl, M. R., Grondal, C. & Raabe, G. Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441, 861–863 (2006).

    CAS  PubMed  Google Scholar 

  6. 6.

    Climent, M. J., Corma, A., Iborra, S. & Sabater, M. J. Heterogeneous catalysis for tandem reactions. ACS Catal. 4, 870–891 (2014).

    CAS  Google Scholar 

  7. 7.

    Fraile, J. M., Mallada, R., Mayoral, J. A., Menéndez, M. & Roldán, L. Shift of multiple incompatible equilibriums by a combination of heterogeneous catalysis and membranes. Chem. Eur. J. 16, 3296–3299 (2010).

    CAS  PubMed  Google Scholar 

  8. 8.

    Wheeldon, I. et al. Substrate channelling as an approach to cascade reactions. Nat. Chem. 8, 299–309 (2016).

    PubMed  Google Scholar 

  9. 9.

    Fogg, D. E. & dos Santos, E. N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev. 248, 2365–2379 (2004).

    CAS  Google Scholar 

  10. 10.

    Li, L. & Herzon, S. B. Temporal separation of catalytic activities allows anti-Markovnikov reductive functionalization of terminal alkynes. Nat. Chem. 6, 22–27 (2013).

    Google Scholar 

  11. 11.

    Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Singh, N. et al. Tandem reactions in self-sorted catalytic molecular hydrogels. Chem. Sci. 7, 5568–5572 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zeidan, R. K., Hwang, S.-J. & Davis, M. E. Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew. Chem. Int. Ed. 45, 6332–6335 (2006).

    CAS  Google Scholar 

  14. 14.

    Brunelli, N. A., Venkatasubbaiah, K. & Jones, C. W. Cooperative catalysis with acid–base bifunctional mesoporous silica: impact of grafting and co-condensation synthesis methods on material structure and catalytic properties. Chem. Mater. 24, 2433–2442 (2012).

    CAS  Google Scholar 

  15. 15.

    Gianotti, E., Diaz, U., Velty, A. & Corma, A. Designing bifunctional acid–base mesoporous hybrid catalysts for cascade reactions. Catal. Sci. Technol. 3, 2677–2688 (2013).

    CAS  Google Scholar 

  16. 16.

    Weng, Z., Yu, T. & Zaera, F. Synthesis of solid catalysts with spatially resolved acidic and basic molecular functionalities. ACS Catal. 8, 2870–2879 (2018).

    CAS  Google Scholar 

  17. 17.

    Corma, A., Díaz, U., García, T., Sastre, G. & Velty, A. Multifunctional hybrid organic–inorganic catalytic materials with a hierarchical system of well-defined micro-and mesopores. J. Am. Chem. Soc. 132, 15011–15021 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Bass, J. D. & Katz, A. Bifunctional surface imprinting of silica: thermolytic synthesis and characterization of discrete thiol–amine functional group pairs. Chem. Mater. 18, 1611–1620 (2006).

    CAS  Google Scholar 

  19. 19.

    Yu, X. et al. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation. J. Solid State Chem. 184, 289–295 (2011).

    CAS  Google Scholar 

  20. 20.

    Margelefsky, E. L., Bendjériou, A., Zeidan, R. K., Dufaud, V. & Davis, M. E. Nanoscale organization of thiol and arylsulfonic acid on silica leads to a highly active and selective bifunctional, heterogeneous catalyst. J. Am. Chem. Soc. 130, 13442–13449 (2008).

    CAS  PubMed  Google Scholar 

  21. 21.

    Margelefsky, E. L., Zeidan, R. K. & Davis, M. E. Cooperative catalysis by silica-supported organic functional groups. Chem. Soc. Rev. 37, 1118–1126 (2008).

    CAS  PubMed  Google Scholar 

  22. 22.

    Gao, J., Zhang, X., Lu, Y., Liu, S. & Liu, J. Selective functionalization of hollow nanospheres with acid and base groups for cascade reactions. Chem. Eur. J. 21, 7403–7407 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Merino, E. et al. Synthesis of structured porous polymers with acid and basic sites and their catalytic application in cascade-type reactions. Chem. Mater. 25, 981–988 (2013).

    CAS  Google Scholar 

  24. 24.

    Li, P. et al. Core–shell structured mesoporous silica as acid–base bifunctional catalyst with designated diffusion path for cascade reaction sequences. Chem. Commun. 48, 10541–10543 (2012).

    CAS  Google Scholar 

  25. 25.

    Li, P. et al. Core–shell structured MgAl-LDO@Al-MS hexagonal nanocomposite: an all inorganic acid–base bifunctional nanoreactor for one-pot cascade reactions. J. Mater. Chem. A 2, 339–344 (2014).

    CAS  Google Scholar 

  26. 26.

    Vernekar, D. & Jagadeesan, D. Tunable acid–base bifunctional catalytic activity of FeOOH in an orthogonal tandem reaction. Catal. Sci. Technol. 5, 4029–4038 (2015).

    CAS  Google Scholar 

  27. 27.

    Huang, Y., Xu, S. & Lin, V. S. Y. Bifunctionalized mesoporous materials with site-separated Brønsted acids and bases: catalyst for a two-step reaction sequence. Angew. Chem. Int. Ed. 50, 661–664 (2011).

    CAS  Google Scholar 

  28. 28.

    Yang, Y. et al. A yolk–shell nanoreactor with a basic core and an acidic shell for cascade reactions. Angew. Chem. Int. Ed. 51, 9164–9168 (2012).

    CAS  Google Scholar 

  29. 29.

    Jun, S. W. et al. One-pot synthesis of magnetically recyclable mesoporous silica supported acid–base catalysts for tandem reactions. Chem. Commun. 49, 7821–7823 (2013).

    CAS  Google Scholar 

  30. 30.

    Motokura, K. et al. An acidic layered clay is combined with a basic layered clay for one-pot sequential reactions. J. Am. Chem. Soc. 127, 9674–9675 (2005).

    CAS  PubMed  Google Scholar 

  31. 31.

    Corma, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 95, 559–614 (1995).

    CAS  Google Scholar 

  32. 32.

    Choudary, B. M., Ranganath, K. V., Pal, U., Kantam, M. L. & Sreedhar, B. Nanocrystalline MgO for asymmetric Henry and Michael reactions. J. Am. Chem. Soc. 127, 13167–13171 (2005).

    CAS  PubMed  Google Scholar 

  33. 33.

    Díez, V., Apesteguía, C. & Di Cosimo, J. Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. J. Catal. 240, 235–244 (2006).

    Google Scholar 

  34. 34.

    Shimizu, K.-i & Satsuma, A. Toward a rational control of solid acid catalysis for green synthesis and biomass conversion. Energy Environ. Sci. 4, 3140–3153 (2011).

    CAS  Google Scholar 

  35. 35.

    Osatiashtiani, A., Durndell, L. J., Manayil, J. C., Lee, A. F. & Wilson, K. Influence of alkyl chain length on sulfated zirconia catalysed batch and continuous esterification of carboxylic acids by light alcohols. Green Chem. 18, 5529–5535 (2016).

    CAS  Google Scholar 

  36. 36.

    Montero, J. M., Gai, P., Wilson, K. & Lee, A. F. Structure-sensitive biodiesel synthesis over MgO nanocrystals. Green Chem. 11, 265–268 (2009).

    CAS  Google Scholar 

  37. 37.

    Ciddor, L., Bennett, J. A., Hunns, J. A., Wilson, K. & Lee, A. F. Catalytic upgrading of bio-oils by esterification. J. Chem. Technol. Biotechnol. 90, 780–795 (2015).

    CAS  Google Scholar 

  38. 38.

    Chai, M., TU, Q., LU, M. & Yang, Y. J. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Process. Technol. 125, 106–113 (2014).

    CAS  Google Scholar 

  39. 39.

    Xu, P.-F. & Wang, W. Catalytic Cascade Reactions (John Wiley, 2013).

  40. 40.

    Djakovitch, L., Dufaud, V. & Zaidi, R. Heterogeneous palladium catalysts applied to the synthesis of 2- and 2,3-functionalised indoles. Adv. Synth. Catal. 348, 715–724 (2006).

    CAS  Google Scholar 

  41. 41.

    Peng, W.-H., Lee, Y.-Y., Wu, C. & Wu, K. C. W. Acid–base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion. J. Mater. Chem. 22, 23181–23185 (2012).

    CAS  Google Scholar 

  42. 42.

    Takagaki, A., Ohara, M., Nishimura, S. & Ebitani, K. A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides. Chem. Commun., 6276–6278 (2009).

  43. 43.

    Shang, F. et al. Direct synthesis of acid–base bifunctionalized hexagonal mesoporous silica and its catalytic activity in cascade reactions. J. Colloid Interface Sci. 355, 190–197 (2011).

    CAS  PubMed  Google Scholar 

  44. 44.

    Shiju, N. R., Alberts, A. H., Khalid, S., Brown, D. R. & Rothenberg, G. Mesoporous silica with site-isolated amine and phosphotungstic acid groups: a solid catalyst with tunable antagonistic functions for one-pot tandem reactions. Angew. Chem. Int. Ed. 50, 9615–9619 (2011).

    CAS  Google Scholar 

  45. 45.

    Cohen, B. J., Kraus, M. A. & Patchornik, A. ‘Wolf and lamb’ reactions: equilibrium and kinetic effects in multipolymer systems. J. Am. Chem. Soc. 103, 7620–7629 (1981).

    CAS  Google Scholar 

  46. 46.

    Chi, Y., Scroggins, S. T. & Fréchet, J. M. J. One-pot multi-component asymmetric cascade reactions catalyzed by soluble star polymers with highly branched non-interpenetrating catalytic cores. J. Am. Chem. Soc. 130, 6322–6323 (2008).

    CAS  PubMed  Google Scholar 

  47. 47.

    Parlett, C. M. et al. Spatially orthogonal chemical functionalization of a hierarchical pore network for catalytic cascade reactions. Nat. Mater. 15, 178–182 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Wei, Y. L., Wang, Y. M., Zhu, J. H. & Wu, Z. Y. In-situ coating of SBA-15 with MgO: direct synthesis of mesoporous solid bases from strong acidic systems. Adv. Mater. 15, 1943–1945 (2003).

    CAS  Google Scholar 

  49. 49.

    Osatiashtiani, A. et al. Hydrothermally stable, conformal, sulfated zirconia monolayer catalysts for glucose conversion to 5-HMF. ACS Catal. 5, 4345–4352 (2015).

    CAS  Google Scholar 

  50. 50.

    Zhang, Y., Liang, H., Zhao, C. Y. & Liu, Y. Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols. J. Mater. Sci. 44, 931–938 (2009).

    CAS  Google Scholar 

  51. 51.

    Di Cosimo, J. I., Díez, V. K., Ferretti, C. & Apesteguía, C. R. in Catalysis, Vol. 26 (eds Spivey J., Dooley, K. M. & Han, Y.-F.) 1–28 (Royal Society of Chemistry, 2014).

  52. 52.

    Pennycook, S. & Boatner, L. Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565–567 (1988).

    CAS  Google Scholar 

  53. 53.

    Robinson, N., Robertson, C., Gladden, L. F., Jenkins, S. J. & D’Agostino, C. Direct correlation between adsorption energetics and nuclear spin relaxation in a liquid-saturated catalyst material. ChemPhysChem 19, 2472–2479 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Isaacs, M. A. et al. Unravelling mass transport in hierarchically porous catalysts. J. Mater. Chem. A 7, 11814–11825 (2019).

    CAS  Google Scholar 

  55. 55.

    Robinson, N. & D’Agostino, C. NMR investigation into the influence of surface interactions on liquid diffusion in a mesoporous catalyst support. Top. Catal. 63, 391–327 (2020).

    Google Scholar 

  56. 56.

    Song, Y. Q. et al. T1–T2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J. Magn. Reson. 154, 261–268 (2002).

    CAS  PubMed  Google Scholar 

  57. 57.

    Galarneau, A., Cambon, H., Di Renzo, F. & Fajula, F. True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature. Langmuir 17, 8328–8335 (2001).

    CAS  Google Scholar 

  58. 58.

    Mitchell, J. et al. Validation of NMR relaxation exchange time measurements in porous media. J. Chem. Phys. 127, 234701 (2007).

    CAS  PubMed  Google Scholar 

  59. 59.

    Li, G., Xiao, J. & Zhang, W. Efficient and reusable amine-functionalized polyacrylonitrile fiber catalysts for Knoevenagel condensation in water. Green. Chem. 14, 2234–2242 (2012).

    CAS  Google Scholar 

  60. 60.

    Chen, X., Arruebo, M. & Yeung, K. L. Flow-synthesis of mesoporous silicas and their use in the preparation of magnetic catalysts for Knoevenagel condensation reactions. Catal. Today 204, 140–147 (2013).

    CAS  Google Scholar 

  61. 61.

    Sen, T., Tiddy, G., Casci, J. & Anderson, M. Synthesis and characterization of hierarchically ordered porous silica materials. Chem. Mater. 16, 2044–2054 (2004).

    CAS  Google Scholar 

  62. 62.

    Wainwright, S. G. et al. True liquid crystal templating of SBA-15 with reduced microporosity. Micropor. Mesopor. Mat. 172, 112–117 (2013).

    CAS  Google Scholar 

  63. 63.

    Mazumder, V. & Sun, S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation. J. Am. Chem. Soc. 131, 4588–4589 (2009).

    CAS  PubMed  Google Scholar 

  64. 64.

    Brun, N. et al. Hard macrocellular silica Si (HIPE) foams templating micro/macroporous carbonaceous monoliths: applications as lithium ion battery negative electrodes and electrochemical capacitors. Adv. Funct. Mater. 19, 3136–3145 (2009).

    CAS  Google Scholar 

  65. 65.

    Akkerman, A. et al. Inelastic electron interactions in the energy range 50 eV to 10 keV in insulators: alkali halides and metal oxides. Phys. Status Solidi b 198, 769–784 (1996).

    CAS  Google Scholar 

  66. 66.

    Platon, A. & Thomson, W. J. Quantitative Lewis/Brönsted ratios using DRIFTS. Ind. Eng. Chem. Res. 42, 5988–5992 (2003).

    CAS  Google Scholar 

  67. 67.

    Farneth, W. E. & Gorte, R. J. Methods for characterizing zeolite acidity. Chem. Rev. 95, 615–635 (1995).

    CAS  Google Scholar 

Download references


We thank the Australian Research Council for support (LP180100116, IC150100019, DP 200100204 and DP200100313). Electron microscopy access was provided through the Leeds EPSRC Nanoscience and Nanotechnology Research Equipment Facility (EP/K023853/1), the University of Birmingham Nanoscale Physics Laboratory and the Durham University G.J. Russell Microscopy Facility.

Author information




A.F.L. and K.W. conceived the work. A.F.L., M.A.I., C.M.A.P. and K.W. planned the experiments. M.A.I. and A.C.L. synthesized materials. S.K.B. and S.J. synthesized Pt NPs. M.A.I., A.C.L. and J.M. performed catalytic testing. M.A.I., C.M.A.P., L.J.D., N.S.H., D.J. and N.R. undertook materials characterization. N.R. and M.L.J. analysed NMR data. M.A.I., C.M.A.P., N.R., M.L.J., K.W. and A.F.L. wrote the manuscript.

Corresponding authors

Correspondence to Karen Wilson or Adam F. Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Ordered macropore network of spatially orthogonal acid–base catalyst.

(a) SEM micrograph, and (b) macropore size distribution from Hg intrusion porosimetry of SZ/MgO/MM-SBA-15. Corresponding normal and cumulative size distributions from SEM of (c) macropore diameter, and (d) macropore window diameter. Note that Hg intrusion measures macropore window size and not macropore diameter64.

Extended Data Fig. 2 Acid–base properties of hierarchical porous catalysts.

(a) DRIFT spectra of saturated chemisorbed pyridine adlayers, (b) reactively-formed propene mass spectra following temperature-programmed desorption of chemisorbed propylamine and associated acid site loadings determined from accompanying TGA mass losses, and (c) CO2 mass spectra following temperature-programmed desorption of chemisorbed CO2 with base site loadings from CO2 pulse chemisorption over MM-SBA-15 materials.

Extended Data Fig. 3 Imaging of acid and base sites within spatially orthogonal acid–base catalyst using funtionalised Pt nanoparticles.

(a) HAADF-STEM, and (b) bright-field micrographs of SZ/MgO/MM-SBA-15 treated with 3-mercaptopropionic acid functionalised Pt NPs, and (c) corresponding area-averaged Pt concentrations determined by EDX within highlighted regions of HAADF-STEM image. Analogous (d) HAADF-STEM, (e) bright-field, and (f) corresponding area-averaged Pt concentrations determined by EDX for SZ/MgO/MM-SBA-15 treated with 4-aminothiophenol functionalised Pt NPs. (g) and (h) Raw EDX spectra associated with mesopore and macropore domains in images (c) and (f) respectively.

Extended Data Fig. 4 Catalytic performance of bifunctional nanoparticle catalyst containing co-located acid–base sites.

Tributyrin transesterification (TAG) with methanol in the absence or presence of hexanoic acid (FFA) over MgO/SZ and SZ nanoparticle catalysts, and simultaneous FFA esterification. Error bars represent S.D. of the mean (n = 3). Reaction conditions: 100 mg catalyst, 5 mmol tributyrin or a mixture of 5 mmol tributyrin/5 mol hexanoic acid, 60 cm3 methanol, 0.1 mmol dihexylether as an internal standard, 60 °C under air, 3 h reaction.

Extended Data Fig. 5 Catalytic performance of hierarchical porous catalysts in the cascade deacetalisation and condensation of dimethyl acetals.

Cyanoester yield from cascade deacetalisation and Knoevenagel condensation of benzaldehyde dimethyl acetal (BDMA), 2-furaldehyde dimethyl acetal (FDMA) or anisaldehyde dimethyl acetal (ADMA) with ethyl cyanoacetate after 6 h reaction over SZ/MgO/MM-SBA-15, a 1:1 by weight physical mixture of SZ/MM-SBA-15 and MgO/MM-SBA-15, or without catalyst. Reaction conditions: 25 mg catalyst (except for physical mixture where 25 mg each of monofunctional catalyst was used), 5 mmol dimethyl acetal, 50 mmol ethyl cyanoacetate, 5 mmol deionised water, 5 cm3 toluene, 1 mmol nonane as an internal standard, 50 °C under N2. Error bars represent S.D. of the mean (n = 2).

Supplementary information

Supplementary Information

Supplementary Figs. 1-13, discussion, note and Tables 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isaacs, M.A., Parlett, C.M.A., Robinson, N. et al. A spatially orthogonal hierarchically porous acid–base catalyst for cascade and antagonistic reactions. Nat Catal 3, 921–931 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing