Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes

Abstract

Bioelectrocatalysis provides access to sustainable and highly efficient technological applications. However, several limitations related either to the intrinsic properties of the biocatalyst or to technical difficulties still hamper or even prevent the integration of such devices into technologically relevant large-scale processes. In this Review, we challenge the common viewpoint suggesting biology-based catalytic systems as a promising approach for the provision of sustainable stored energy and discuss the status of bioelectrocatalytic devices developed for energy conversion. In particular, we focus on two major research areas in the field, that is, H2-powered hydrogenase-based biofuel cells and biophotoelectrodes for solar energy harvesting. We identify the main limitations that have to be addressed to gain access to applied large-scale bio-based and bio-inspired advanced energy conversion systems. Moreover, we show recent examples and milestones that are paving the way towards potential realization of these technologies by overcoming existing limiting factors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Redox proteins and redox active cofactors.

panel a reproduced from ref. 34, Wiley, under a Creative Commons license CC BY 4.0

Fig. 2: Photoactive protein complexes for integration in biophotoelectrodes.
Fig. 3: Protection and reactivation of hydrogenases.

panels a and b reproduced from ref. 50, Springer Nature Ltd; and panels c and d adapted from ref. 53, Springer Nature Ltd.

Fig. 4: Hydrogenase-based gas diffusion electrodes.

panel a reproduced from ref. 58, Wiley; panel b reproduced from ref. 62, Elsevier; and panels c and d reproduced from ref. 64, Springer Nature Ltd, under a Creative Commons license CC BY 4.0

Fig. 5: Synthesis of artificial enzymes.

panel a reproduced from ref. 76, Wiley; and panel b reproduced from ref. 71, RSC

Fig. 6: High surface area biophotoanodes for bias-free solar driven water splitting.

panels ac reproduced from ref. 88, RSC, under a Creative Commons license CC BY 3.0; and panel d reproduced from ref. 43, Springer Nature Ltd

Fig. 7: Reconstitution of a photoactive protein complex.

reproduced from ref. 94, Elsevier

References

  1. 1.

    Liu, J. et al. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Prabhulkar, S., Tian, H., Wang, X., Zhu, J.-J. & Li, C.-Z. Engineered proteins: redox properties and their applications. Antioxid. Redox Signal. 17, 1796–1822 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Yachandra, V. K., Sauer, K. & Klein, M. P. Manganese cluster in photosynthesis: where plants oxidize water to dioxygen. Chem. Rev. 96, 2927–2950 (1996).

    CAS  PubMed  Google Scholar 

  4. 4.

    Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    CAS  PubMed  Google Scholar 

  5. 5.

    Armstrong, F. A. Copying biology’s ways with hydrogen. Science 339, 658–659 (2013).

    CAS  PubMed  Google Scholar 

  6. 6.

    Faunce, T. A. et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ. Sci. 6, 695–698 (2013).

    Google Scholar 

  7. 7.

    Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  Google Scholar 

  8. 8.

    McKone, J. R., Marinescu, S. C., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 5, 865–878 (2014).

    CAS  Google Scholar 

  9. 9.

    Vincent, K. A., Parkin, A. & Armstrong, F. A. Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem. Rev. 107, 4366–4413 (2007).

    CAS  PubMed  Google Scholar 

  10. 10.

    Xiao, X. et al. Tackling the challenges of enzymatic (bio)fuel cells. Chem. Rev. 119, 9509–9558 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Shi, J. et al. Enzymatic conversion of carbon dioxide. Chem. Soc. Rev. 44, 5981–6000 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Yuan, M. et al. Creating a low-potential redox polymer for efficient electroenzymatic CO2 reduction. Angew. Chem. Int. Ed. 57, 6582–6586 (2018).

    CAS  Google Scholar 

  13. 13.

    Banerjee, G., Scott-Craig, J. S. & Walton, J. D. Improving enzymes for biomass conversion: a basic research perspective. Bioenerg. Res. 3, 82–92 (2010).

    Google Scholar 

  14. 14.

    Sokol, K. P. et al. Photoreduction of CO2 with a formate dehydrogenase driven by photosystem II using a semi-artificial Z-scheme architecture. J. Am. Chem. Soc. 140, 16418–16422 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Dutta, S. & Wu, K. C.-W. Enzymatic breakdown of biomass: enzyme active sites, immobilization, and biofuel production. Green. Chem. 16, 4615–4626 (2014).

    CAS  Google Scholar 

  16. 16.

    Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    PubMed  Google Scholar 

  17. 17.

    Masa, J. & Schuhmann, W. Electrocatalysis and bioelectrocatalysis – distinction without a difference. Nano Energy 29, 466–475 (2016).

    CAS  Google Scholar 

  18. 18.

    Mazurenko, I., Wang, X., Poulpiquet, A. de & Lojou, E. H2/O2 enzymatic fuel cells: from proof-of-concept to powerful devices. Sustain. Energy Fuels 1, 1475–1501 (2017).

    CAS  Google Scholar 

  19. 19.

    Cosnier, S., J. Gross, A., Le Goff, A. & Holzinger, M. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: achievements and limitations. J. Power Sources 325, 252–263 (2016).

    CAS  Google Scholar 

  20. 20.

    Rasmussen, M., Abdellaoui, S. & Minteer, S. D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 76, 91–102 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Macazo, F. C. & Minteer, S. D. Enzyme cascades in biofuel cells. Curr. Opin. Electrochem. 5, 114–120 (2017).

    CAS  Google Scholar 

  22. 22.

    Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Wang, Y. et al. Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. Chem. Rev. 118, 5201–5241 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Shleev, S., González-Arribas, E. & Falk, M. Biosupercapacitors. Curr. Opin. Electrochem. 5, 226–233 (2017).

    CAS  Google Scholar 

  25. 25.

    Pankratov, D., Blum, Z. & Shleev, S. Hybrid electric power biodevices. ChemElectroChem 1, 1798–1807 (2014).

    CAS  Google Scholar 

  26. 26.

    Heller, A. & Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008).

    CAS  PubMed  Google Scholar 

  27. 27.

    Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    CAS  PubMed  Google Scholar 

  28. 28.

    Mano, N. & Poulpiquet, Ade O2 Reduction in enzymatic biofuel cells. Chem. Rev. 118, 2392–2468 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    Lubitz, W., Ogata, H., Rüdiger, O. & Reijerse, E. Hydrogenases. Chem. Rev. 114, 4081–4148 (2014).

    CAS  PubMed  Google Scholar 

  30. 30.

    Jones, A. K., Sillery, E., Albracht, S. P. J. & Armstrong, F. A. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem. Commun. 2002, 866–867 (2002).

    Google Scholar 

  31. 31.

    Moore, G. F. & Brudvig, G. W. Energy conversion in photosynthesis: a paradigm for solar fuel production. Annu. Rev. Condens. Matter Phys. 2, 303–327 (2011).

    CAS  Google Scholar 

  32. 32.

    Friebe, V. M. & Frese, R. N. Photosynthetic reaction center-based biophotovoltaics. Curr. Opin. Electrochem. 5, 126–134 (2017).

    CAS  Google Scholar 

  33. 33.

    Tel-Vered, R. & Willner, I. Photo-bioelectrochemical cells for energy conversion, sensing, and optoelectronic applications. ChemElectroChem 1, 1778–1797 (2014).

    CAS  Google Scholar 

  34. 34.

    Yates, N. D. J., Fascione, M. A. & Parkin, A. Methodologies for “wiring” redox proteins/enzymes to electrode surfaces. Chem. Eur. J. 24, 12164–12182 (2018).

    CAS  PubMed  Google Scholar 

  35. 35.

    Yuan, M. & Minteer, S. D. Redox polymers in electrochemical systems: from methods of mediation to energy storage. Curr. Opin. Electrochem. 15, 1–6 (2019).

    Google Scholar 

  36. 36.

    Ruff, A. Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts. Curr. Opin. Electrochem. 5, 66–73 (2017).

    CAS  Google Scholar 

  37. 37.

    Le Goff, A. & Holzinger, M. Molecular engineering of the bio/nano-interface for enzymatic electrocatalysis in fuel cells. Sustain. Energy Fuels 2, 2555–2566 (2018).

    Google Scholar 

  38. 38.

    Milton, R. D., Wang, T., Knoche, K. L. & Minteer, S. D. Tailoring biointerfaces for electrocatalysis. Langmuir 32, 2291–2301 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Heller, A. Electron-conducting redox hydrogels: design, characteristics and synthesis. Curr. Opin. Chem. Biol. 10, 664–672 (2006).

    CAS  PubMed  Google Scholar 

  40. 40.

    Mazurenko, I. et al. Impact of substrate diffusion and enzyme distribution in 3D-porous electrodes: a combined electrochemical and modelling study of a thermostable H2/O2 enzymatic fuel cell. Energy Environ. Sci. 10, 1966–1982 (2017).

    CAS  Google Scholar 

  41. 41.

    Ravi, S. K. & Tan, S. C. Progress and perspectives in exploiting photosynthetic biomolecules for solar energy harnessing. Energy Environ. Sci. 8, 2551–2573 (2015).

    CAS  Google Scholar 

  42. 42.

    Yehezkeli, O., Tel-Vered, R., Michaeli, D., Willner, I. & Nechushtai, R. Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynth. Res. 120, 71–85 (2014).

    CAS  PubMed  Google Scholar 

  43. 43.

    Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018). Coupling of PSII and hydrogenase-modified hierarchically structured ITO electrodes for enabling photobiological water splitting.

    CAS  Google Scholar 

  44. 44.

    Plumeré, N. & Nowaczyk, M. M. Biophotoelectrochemistry of photosynthetic proteins. Adv. Biochem. Eng. Biotechnol. 158, 111–136 (2016).

    PubMed  Google Scholar 

  45. 45.

    Kato, M., Zhang, J. Z., Paul, N. & Reisner, E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem. Soc. Rev. 43, 6485–6497 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Nguyen, K. & Bruce, B. D. Growing green electricity: progress and strategies for use of photosystem I for sustainable photovoltaic energy conversion. Biochim. Biophys. Acta 1837, 1553–1566 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Zhao, F. et al. Light-induced formation of partially reduced oxygen species limits the lifetime of photosystem 1-based biocathodes. Nat. Commun. 9, 1973 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Buesen, D., Hoefer, T., Zhang, H. & Plumeré, N. A kinetic model for redox-active film based biophotoelectrodes. Faraday Discuss. 215, 39–53 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Operamolla, A. et al. “Garnishing” the photosynthetic bacterial reaction center for bioelectronics. J. Mater. Chem. C. 3, 6471–6478 (2015).

    CAS  Google Scholar 

  50. 50.

    Plumeré, N. et al. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat. Chem. 6, 822–827 (2014). Protection of air-sensitive hydrogenases by incorporation of the biocatalyst into a low potential redox polymer.

    PubMed  Google Scholar 

  51. 51.

    Oughli, A. A. et al. A redox hydrogel protects the O2-sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew. Chem. Int. Ed. 54, 12329–12333 (2015).

    CAS  Google Scholar 

  52. 52.

    Ruff, A. et al. Protection and reactivation of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough under oxidative conditions. ACS Energy Lett. 2, 964–968 (2017).

    CAS  Google Scholar 

  53. 53.

    Ruff, A. et al. A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells. Nat. Commun. 9, 3675 (2018). Protection of air-sensitive hydrogenase by an enzymatic O 2 scavenging system embedded in a polymer multilayer structure on the electrode.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Shiraiwa, S. et al. Reactivation of standard NiFe-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry 123, 156–161 (2018).

    CAS  PubMed  Google Scholar 

  55. 55.

    Benesch, R. E. & Benesch, R. Enzymatic removal of oxygen for polarography and related methods. Science 118, 447–448 (1953).

    CAS  PubMed  Google Scholar 

  56. 56.

    Plumeré, N., Henig, J. & Campbell, W. H. Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: Application in an amperometric nitrate biosensor. Anal. Chem. 84, 2141–2146 (2012).

    PubMed  Google Scholar 

  57. 57.

    Radu, V., Frielingsdorf, S., Evans, S. D., Lenz, O. & Jeuken, L. J. C. Enhanced oxygen-tolerance of the full heterotrimeric membrane-bound NiFe-hydrogenase of Ralstonia eutropha. J. Am. Chem. Soc. 136, 8512–8515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Horst, A. E. W., Mangold, K.-M. & Holtmann, D. Application of gas diffusion electrodes in bioelectrochemical syntheses and energy conversion. Biotechnol. Bioeng. 113, 260–267 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    So, K., Sakai, K. & Kano, K. Gas diffusion bioelectrodes. Curr. Opin. Electrochem. 5, 173–182 (2017).

    CAS  Google Scholar 

  60. 60.

    Lalaoui, N. et al. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes. Chem. Commun. 51, 7447–7450 (2015).

    CAS  Google Scholar 

  61. 61.

    So, K. et al. Direct electron transfer-type dual gas diffusion H2/O2 biofuel cells. J. Mater. Chem. A 4, 8742–8749 (2016).

    CAS  Google Scholar 

  62. 62.

    Xia, H.-Q. et al. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J. Power Sources 335, 105–112 (2016). First hydrogenase-based dual-gas-diffusion biofuel cell with benchmark power output.

    CAS  Google Scholar 

  63. 63.

    Gentil, S. et al. Oriented immobilization of [NiFeSe] hydrogenases on covalently and noncovalently functionalized carbon nanotubes for H2/air enzymatic fuel cells. ACS Catal. 8, 3957–3964 (2018).

    CAS  Google Scholar 

  64. 64.

    Szczesny, J. et al. A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode. Nat. Commun. 9, 4715 (2018). First dual-gas diffusion H 2/air biofuel cell containing an O 2-protected redox polymer/hydrogenase bioanode.

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ruff, A. et al. Polymer-bound DuBois-type molecular H2 oxidation Ni catalysts are protected by redox polymer matrices. ACS Appl. Energy Mater. 2, 2921–2929 (2019).

    CAS  Google Scholar 

  66. 66.

    Mano, N. Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 128, 218–240 (2019).

    CAS  PubMed  Google Scholar 

  67. 67.

    Berggren, G. et al. Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499, 66–69 (2013). First report on the artificial maturation of a [FeFe] hydrogenase by combining an apo-hydrogenase and a synthetic di-iron-cluster that was attached to a maturation enzyme.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Esselborn, J. et al. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic. Nat. Chem. Biol. 9, 607–609 (2013). Activation of [FeFe] hydrogenase via an artificial maturation process without the need of maturases.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Li, Y. & Rauchfuss, T. B. Synthesis of diiron(I) dithiolato carbonyl complexes. Chem. Rev. 116, 7043–7077 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Tard, C. & Pickett, C. J. Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem. Rev. 109, 2245–2274 (2009).

    CAS  PubMed  Google Scholar 

  71. 71.

    Wittkamp, F., Senger, M., Stripp, S. T. & Apfel, U.-P. [FeFe]-Hydrogenases: recent developments and future perspectives. Chem. Commun. 54, 5934–5942 (2018).

    CAS  Google Scholar 

  72. 72.

    Caserta, G., Roy, S., Atta, M., Artero, V. & Fontecave, M. Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake. Curr. Opin. Chem. Biol. 25, 36–47 (2015).

    CAS  PubMed  Google Scholar 

  73. 73.

    Megarity, C. F. et al. Electrochemical investigations of the mechanism of assembly of the active-site H-cluster of [FeFe]-hydrogenases. J. Am. Chem. Soc. 138, 15227–15233 (2016).

    CAS  PubMed  Google Scholar 

  74. 74.

    Papini, C. et al. Bioinspired artificial [FeFe]-hydrogenase with a synthetic H-cluster. ACS Catal. 9, 4495–4501 (2019).

    CAS  Google Scholar 

  75. 75.

    Siebel, J. F. et al. Hybrid [FeFe]-hydrogenases with modified active sites show remarkable residual enzymatic activity. Biochem. 54, 1474–1483 (2015).

    CAS  Google Scholar 

  76. 76.

    Birrell, J. A. et al. Artificial maturation of the highly active heterodimeric [FeFe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Isr. J. Chem. 56, 852–863 (2016).

    CAS  Google Scholar 

  77. 77.

    Badura, A., Kothe, T., Schuhmann, W. & Rögner, M. Wiring photosynthetic enzymes to electrodes. Energy Environ. Sci. 4, 3263–3274 (2011).

    CAS  Google Scholar 

  78. 78.

    Feifel, S. C., Stieger, K. R., Lokstein, H., Lux, H. & Lisdat, F. High photocurrent generation by photosystem I on artificial interfaces composed of π-system-modified graphene. J. Mater. Chem. A 3, 12188–12196 (2015).

    CAS  Google Scholar 

  79. 79.

    Feifel, S. C., Lokstein, H., Hejazi, M., Zouni, A. & Lisdat, F. Unidirectional photocurrent of photosystem I on π-system-modified graphene electrodes: Nanobionic approaches for the construction of photobiohybrid systems. Langmuir 31, 10590–10598 (2015).

    CAS  PubMed  Google Scholar 

  80. 80.

    Stieger, K. R., Feifel, S. C., Lokstein, H. & Lisdat, F. Advanced unidirectional photocurrent generation via cytochrome c as reaction partner for directed assembly of photosystem I. PhysChemChemPhys 16, 15667–15674 (2014).

    CAS  Google Scholar 

  81. 81.

    Kiliszek, M. et al. Orientation of photosystem I on graphene through cytochrome c553 leads to improvement in photocurrent generation. J. Mater. Chem. A 6, 18615–18626 (2018).

    CAS  Google Scholar 

  82. 82.

    Zhao, F. et al. A photosystem I monolayer with anisotropic electron flow enables z-scheme like photosynthetic water splitting. Energy Environ. Sci. 12, 3133–3143 (2019).

    CAS  Google Scholar 

  83. 83.

    Gordiichuk, P. et al. Orientation and incorporation of photosystem I in bioelectronics devices enabled by phage display. Adv. Sci. 4, 1600393 (2017).

    Google Scholar 

  84. 84.

    Robinson, M. T., Gizzie, E. A., Mwambutsa, F., Cliffel, D. E. & Jennings, G. K. Mediated approaches to photosystem I-based biophotovoltaics. Curr. Opin. Electrochem. 5, 211–217 (2017).

    CAS  Google Scholar 

  85. 85.

    Friebe, V. M. et al. Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv. Funct. Mater. 26, 285–292 (2016). Introduction of nanoporous silver electrodes for enhanced photocurrent with reaction centre based biophotocathodes.

    CAS  Google Scholar 

  86. 86.

    Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    CAS  PubMed  Google Scholar 

  87. 87.

    Stieger, K. R. et al. Biohybrid architectures for efficient light-to-current conversion based on photosystem I within scalable 3D mesoporous electrodes. J. Mater. Chem. A 4, 17009–17017 (2016).

    CAS  Google Scholar 

  88. 88.

    Sokol, K. P. et al. Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy Environ. Sci. 9, 3698–3709 (2016). Combination of hierarchical structured transparent electrodes and redox polymers ensure benchmark photocurrents for PSII based biophotoanodes.

    CAS  Google Scholar 

  89. 89.

    LeBlanc, G., Chen, G., Gizzie, E. A., Jennings, G. K. & Cliffel, D. E. Enhanced photocurrents of photosystem I films on p-doped silicon. Adv. Mater. 24, 5959–5962 (2012).

    CAS  PubMed  Google Scholar 

  90. 90.

    Das, R. et al. Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett. 4, 1079–1083 (2004).

    CAS  Google Scholar 

  91. 91.

    Dervishogullari, D., Gizzie, E. A., Jennings, G. K. & Cliffel, D. E. Polyviologen as electron transport material in photosystem I-Based biophotovoltaic cells. Langmuir 34, 15658–15664 (2018).

    CAS  PubMed  Google Scholar 

  92. 92.

    Shah, V. B. et al. Linker-free deposition and adhesion of photosystem I onto nanostructured TiO2 for biohybrid photoelectrochemical cells. Langmuir 31, 1675–1682 (2015).

    CAS  PubMed  Google Scholar 

  93. 93.

    Terasaki, N. et al. Plugging a molecular wire into photosystem I: Reconstitution of the photoelectric conversion system on a gold electrode. Angew. Chem. Int. Ed. 48, 1585–1587 (2009). Extraction of electrons from intermediate co-factors by reconstitution of PSI with an artificial molecular wire.

    CAS  Google Scholar 

  94. 94.

    Terasaki, N. et al. Bio-photosensor: Cyanobacterial photosystem I coupled with transistor via molecular wire. Biochim. Biophys. Acta 1767, 653–659 (2007).

    CAS  PubMed  Google Scholar 

  95. 95.

    Zhao, F., Ruff, A., Rögner, M., Schuhmann, W. & Conzuelo, F. Extended operational lifetime of a photosystem-based bioelectrode. J. Am. Chem. Soc. 141, 5102–5106 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Ogata, H., Nishikawa, K. & Lubitz, W. Hydrogens detected by subatomic resolution protein crystallography in a NiFe hydrogenase. Nature 520, 571–574 (2015).

    PubMed  Google Scholar 

  97. 97.

    Kommoju, P.-R., Chen, Z.-W., Bruckner, R. C., Mathews, F. S. & Jorns, M. S. Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate. Biochem 50, 5521–5534 (2011).

    CAS  Google Scholar 

  98. 98.

    Bartlett, P. N. & Al-Lolage, F. A. There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J. Electroanal. Chem. 819, 26–37 (2018).

    CAS  Google Scholar 

  99. 99.

    Kato, Y., Nagao, R. & Noguchi, T. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proc. Natl Acad. Sci. USA 113, 620–625 (2016).

    CAS  PubMed  Google Scholar 

  100. 100.

    Tan, S. C., Crouch, L. I., Jones, M. R. & Welland, M. Generation of alternating current in response to discontinuous illumination by photoelectrochemical cells based on photosynthetic proteins. Angew. Chem. Int. Ed. 51, 6667–6671 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the framework of the Cluster of Excellence RESOLV (EXC-2033; project number 390677874).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schuhmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruff, A., Conzuelo, F. & Schuhmann, W. Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nat Catal 3, 214–224 (2020). https://doi.org/10.1038/s41929-019-0381-9

Download citation

Further reading