Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Making quantitative sense of electromicrobial production

Abstract

The integration of electrochemical and microbial processes offers a unique opportunity to displace fossil carbon with CO2 and renewable energy as the primary feedstocks for carbon-based chemicals. Yet, it is unclear which strategy for CO2 activation and electron transfer to microbes has the capacity to transform the chemical industry. Here, we systematically survey experimental data for microbial growth on compounds that can be produced electrochemically, either directly or indirectly. We show that only a few strategies can support efficient electromicrobial production, where formate and methanol seem the best electron mediators in terms of energetic efficiency of feedstock bioconversion under both anaerobic and aerobic conditions. We further show that direct attachment of microbes to the cathode is highly constrained due to an inherent discrepancy between the rates of the electrochemical and biological processes. Our quantitative perspective provides a data-driven roadmap towards an economically and environmentally viable realization of electromicrobial production.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic representation of the three main types of electromicrobial production.
Fig. 2: Microbial growth parameters associated with different feedstocks and assimilation pathways.
Fig. 3: Approximated costs of electro-production of electron carriers as a function of energetic efficiency and current density.
Fig. 4: A two-step catalytic process can replace direct electrochemical production.
Fig. 5: Summarized comparison between different C1 electron carriers.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhu, X.-G., Long, S. P. & Ort, D. R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153–159 (2008).

    CAS  PubMed  Google Scholar 

  2. Cotton, C. A. R. et al. Photosynthetic constraints on fuel from microbes. Front. Bioeng. Biotechnol. 3, 1–5 (2015).

    Google Scholar 

  3. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    CAS  Article  PubMed  Google Scholar 

  4. Claassens, N. J., Sousa, D. Z., Dos Santos, V. A. P. M., De Vos, W. M. & Van Der Oost, J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 14, 692–706 (2016).

    CAS  PubMed  Google Scholar 

  5. Naik, S. N., Goud, V. V., Rout, P. K. & Dalai, A. K. Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 (2010).

    CAS  Google Scholar 

  6. Conrado, R. J. & Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science 343, 621–623 (2014).

    CAS  PubMed  Google Scholar 

  7. Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    CAS  PubMed  Google Scholar 

  8. Rabaey, K. & Rozendal, R. A. Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8, 706–716 (2010).

    CAS  PubMed  Google Scholar 

  9. Liu, C. et al. Nanowire–bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Conrado, R. J., Haynes, C. A., Haendler, B. E. & Toone, E. J. in Advanced Biofuels and Bioproducts 1037–1064 (Spinger-Verlag, 2013).

  11. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Google Scholar 

  12. Torella, J. P. et al. Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proc. Natl Acad. Sci. USA 112, 2337–2342 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, C. et al. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    CAS  PubMed  Google Scholar 

  14. Khunjar, W. O., Sahin, A., West, A. C., Chandran, K. & Banta, S. Biomass production from electricity using ammonia as an electron carrier in a reverse microbial fuel cell. PLoS One 7, 1–8 (2012).

    Google Scholar 

  15. Guan, J. et al. Development of reactor configurations for an electrofuels platform utilizing genetically modified iron oxidizing bacteria for the reduction of CO2 to biochemicals. J. Biotechnol. 245, 21–27 (2017).

    CAS  PubMed  Google Scholar 

  16. Li, H. et al. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335, 1596–1596 (2012).

    CAS  PubMed  Google Scholar 

  17. Khan, N. E., Myers, J. A., Tuerk, A. L. & Curtis, W. R. A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresour. Technol. 172, 201–211 (2014).

    CAS  PubMed  Google Scholar 

  18. Schuchmann, K. & Müller, V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat. Rev. Microbiol. 12, 809–821 (2014).

    CAS  PubMed  Google Scholar 

  19. Charubin, K., Bennett, R. K., Fast, A. G. & Papoutsakis, E. T. Engineering Clostridium organisms as microbial cell-factories: challenges and opportunities. Metab. Eng. 50, 173–191 (2018).

    CAS  PubMed  Google Scholar 

  20. Schiel-Bengelsdorf, B. & Dürre, P. Pathway engineering and synthetic biology using acetogens. FEBS Lett. 586, 2191–2198 (2012).

    CAS  PubMed  Google Scholar 

  21. Humphreys, C. M. & Minton, N. P. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas. Curr. Opin. Biotechnol. 50, 174–181 (2018).

    CAS  PubMed  Google Scholar 

  22. Köpke, M. et al. 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl. Environ. Microbiol. 77, 5467–5475 (2011).

    PubMed  PubMed Central  Google Scholar 

  23. Abubackar, H. N., Veiga, M. C. & Kennes, C. Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuel. Bioprod. Biorefin. 5, 93–114 (2011).

    CAS  Google Scholar 

  24. Knoll, A. et al. High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J. Biotechnol. 132, 167–179 (2007).

    CAS  PubMed  Google Scholar 

  25. Garcia-Gonzalez, L., Mozumder, M. S. I., Dubreuil, M., Volcke, E. I. P. & De Wever, H. Sustainable autotrophic production of polyhydroxybutyrate (PHB) from CO2 using a two-stage cultivation system. Catal. Today 257, 237–245 (2015).

    CAS  Google Scholar 

  26. Lyu, Z. et al. Engineering the autotroph methanococcus maripaludis for geraniol production. ACS Synth. Biol. 5, 577–581 (2016).

    CAS  PubMed  Google Scholar 

  27. Nayak, D. D. & Metcalf, W. W. Cas9-mediated genome editing in the methanogenic archaeon Methanosarcina acetivorans. Proc. Natl Acad. Sci. USA 114, 2976–2981 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anthony, C. The Biochemistry of Methylotrophs (Academic Press, 1982).

  29. Chistoserdova, L., Kalyuzhnaya, M. G. & Lidstrom, M. E. The expanding world of methylotrophic metabolism. Annu. Rev. Microbiol. 63, 477–499 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lawton, T. J. & Rosenzweig, A. C. Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. J. Am. Chem. Soc. 138, 9327–9340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cornick, N. A. & Allison, M. J. Anabolic incorporation of oxalate by Oxalobacter formigenes. Appl. Environ. Microbiol. 62, 3011–3013 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schneider, K., Skovran, E. & Vorholt, J. A. Oxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1. J. Bacteriol. 194, 3144–3155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tremblay, P. L. & Zhang, T. Electrifying microbes for the production of chemicals. Front. Microbiol. 6, 201 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. Sydow, A., Krieg, T., Ulber, R. & Holtmann, D. Growth medium and electrolyte—how to combine the different requirements on the reaction solution in bioelectrochemical systems using Cupriavidus necator. Eng. Life Sci. 17, 781–791 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  36. Cui, M., Nie, H., Zhang, T., Lovley, D. & Russell, T. P. Three-dimensional hierarchical metal oxide–carbon electrode materials for highly efficient microbial electrosynthesis. Sustain. Energy Fuels 1, 1171–1176 (2017).

    CAS  Google Scholar 

  37. Aryal, N., Halder, A., Tremblay, P. L., Chi, Q. & Zhang, T. Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis. Electrochim. Acta 217, 117–122 (2016).

    CAS  Google Scholar 

  38. Jourdin, L. & Strik, D. in Functional Electrodes for Enzymatic and Microbial Electrochemical Systems 429–472 (World Scientific Publishing, 2017).

  39. Flemming, H.-C., Wingender, J., Griebe, T. & Mayer, C. Biofilms: Recent Advances in their Study and Control (Physicochemical properties of Biofilms) (Harwood Academic, Reading, 2000).

  40. Loferer-Kroßbacher, M., Klima, J. & Psenner, R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis downloaded from. Appl. Environ. Microbiol. 64, 688–694 (1998).

    PubMed  PubMed Central  Google Scholar 

  41. Jourdin, L. et al. High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide. Environ. Sci. Technol. 49, 13566–13574 (2015).

    CAS  PubMed  Google Scholar 

  42. Buttler, A. & Spliethoff, H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew. Sustain. Energy Rev. 82, 2440–2454 (2018).

    CAS  Google Scholar 

  43. Martín, A. J. J., Larrazábal, G. O. O. & Pérez-Ramírez, J. Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem. 17, 5114–5130 (2015).

    Google Scholar 

  44. Ma, S., Luo, R., Moniri, S., Lan, Y. & Kenis, P. J. A. Efficient electrochemical flow system with improved anode for the conversion of CO2 to CO. J. Electrochem. Soc. 161, 1124–1131 (2014).

    Google Scholar 

  45. Jeanty, P. et al. Upscaling and continuous operation of electrochemical CO2 to CO conversion in aqueous solutions on silver gas diffusion electrodes. J. CO 2 Util. 24, 454–462 (2018).

  46. Kopljar, D., Inan, A., Vindayer, P., Wagner, N. & Klemm, E. Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J. Appl. Electrochem. 44, 1107–1116 (2014).

    CAS  Google Scholar 

  47. Kopljar, D., Wagner, N. & Klemm, E. Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes. Chem. Eng. Technol. 39, 2042–2050 (2016).

    CAS  Google Scholar 

  48. Harnisch, F., Rosa, L. F. M., Kracke, F., Virdis, B. & Kromer, J. O. Electrifying white biotechnology: engineering and economic potential of electricity-driven bio-production. ChemSusChem 8, 758–766 (2015).

    CAS  PubMed  Google Scholar 

  49. Bertuccioli, L. et al. Development of Water Electrolysis in the European Union (2014).

  50. Commercialisation of Energy Storage in Europe: Final Report (2015); https://www.fch.europa.eu/sites/default/files/CommercializationofEnergyStorageFinal_3.pdf

  51. Verma, S., Kim, B., Jhong, H. R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    CAS  PubMed  Google Scholar 

  52. Schmidt, O. et al. Future cost and performance of water electrolysis: an expert elicitation study. Int. J. Hydrog. Energy 42, 30470–30492 (2017).

    CAS  Google Scholar 

  53. Ainscough, C., Peterson, D. & Miller, E. Hydrogen Production Cost From PEM Electrolysis (2014); https://www.hydrogen.energy.gov/pdfs/14004_h2_production_cost_pem_electrolysis.pdf

  54. Bazzanella, A. M. & Ausfelder, F. Low Carbon Energy and Feedstock for the European Chemical Industry (2017); https://dechema.de/dechema_media/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry-p-20002750.pdf

  55. Fan, Q. et al. Electrochemical CO2 reduction to C2 + species: heterogeneous electrocatalysts, reaction pathways and optimization strategies. Mater. Today Energy 10, 280–301 (2018).

    Google Scholar 

  56. Gotz, M. et al. Renewable power-to-gas: a technological and economic review. Renew. Energy 85, 1371–1390 (2016).

    Google Scholar 

  57. Bailera, M., Lisbona, P., Romeo, L. M. & Espatolero, S. Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 69, 292–312 (2017).

    CAS  Google Scholar 

  58. Mignard, D. & Pritchard, C. Processes for the synthesis of liquid fuels from CO2 and marine energy. Chem. Eng. Res. Des. 84, 828–836 (2006).

    CAS  Google Scholar 

  59. Szima, S. & Cormos, C. C. Improving methanol synthesis from carbon-free H2 and captured CO2: a techno-economic and environmental evaluation. J. CO 2 Util. 24, 555–563 (2018).

  60. Kezibri, N. & Bouallou, C. Conceptual design and modelling of an industrial scale power to gas-oxycombustion power plant. Int. J. Hydrog. Energy 42, 19411–19419 (2017).

    CAS  Google Scholar 

  61. Gruber, M. et al. Power-to-gas through thermal integration of high-temperature steam electrolysis and carbon dioxide methanation—experimental results. Fuel Process. Technol. J. 181, 61–74 (2018).

    CAS  Google Scholar 

  62. Salomone, F., Giglio, E., Ferrero, D., Santarelli, M. & Pirone, R. Techno-economic modelling of a power-to-gas system based on SOEC electrolysis and CO2 methanation in a RES-based electric grid. Chem. Eng. J. https://doi.org/10.1016/j.cej.2018.10.170 (2018).

  63. Bulushev, D. A. & Ross, J. R. H. Heterogeneous catalysts for hydrogenation of CO2 and bicarbonates to formic acid and formates. Catal. Rev. 60, 566–593 (2018).

    CAS  Google Scholar 

  64. Alvarez, A. et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 117, 9804–9838 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, L. et al. Greening ammonia toward the solar ammonia refinery. Joule 2, 1–20 (2018).

    Google Scholar 

  66. Martin, A. J., Shinagawa, T. & Perez-Ramırez, J. Electrocatalytic reduction of nitrogen: from Haber–Bosch to ammonia artificial leaf. Chem 5, 1–21 (2019).

    Google Scholar 

  67. Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

    CAS  PubMed  Google Scholar 

  68. Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    CAS  Google Scholar 

  69. Weusthuis, R. A., Lamot, I., van der Oost, J. & Sanders, J. P. M. C. Microbial production of bulk chemicals: development of anaerobic processes. Trends Biotechnol. 29, 153–158 (2011).

    CAS  PubMed  Google Scholar 

  70. García-Ochoa, F. & Gómez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27, 153–176 (2009).

    PubMed  Google Scholar 

  71. Greenblatt, J. B., Miller, D. J., Ager, J. W., Houle, F. A. & Sharp, I. D. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2, 381–420 (2018).

    CAS  Google Scholar 

  72. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. CO2 conversion to formic acid in a three compartment cell with SustainionTM membranes. ECS Trans. 77, 1425–1431 (2017).

    CAS  Google Scholar 

  73. Pfeifenschneider, J., Brautaset, T. & Wendisch, V. F. Methanol as carbon substrate in the bio-economy: metabolic engineering of aerobic methylotrophic bacteria for production of value-added chemicals. Biofuel. Bioprod. Biorefin. 11, 719–731 (2017).

    CAS  Google Scholar 

  74. Tremblay, P.-L., Höglund, D., Koza, A., Bonde, I. & Zhang, T. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products. Sci. Rep. 5, 16168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Nicholls, P. Formate as an inhibitor of cytochrome c oxidase. Biochem. Biophys. Res. Commun. 67, 610–616 (1975).

    CAS  PubMed  Google Scholar 

  76. Warnecke, T. & Gill, R. T. Organic acid toxicity, tolerance and production in Escherichia coli biorefining applications. Microb. Cell Fact. 4, 25 (2005).

    PubMed  PubMed Central  Google Scholar 

  77. Kim, P., Kim, J.-H. & Oh, D.-K. Improvement in cell yield of Methylobacterium sp. by reducing the inhibition of medium components for poly-β-hydroxybutyrate production. World J. Microbiol. Biotechnol. 19, 357–361 (2003).

    CAS  Google Scholar 

  78. Choi, J.-H., Kim, J. H., Daniel, M. & Lebeault, J. M. Optimization of growth medium and poly-hydroxybutyric acid production from methanol in Methylobacterium organophilum. Microbiol. Biotechnol. Lett. 17, 392–396 (1989).

    CAS  Google Scholar 

  79. Ahn, J. H., Bang, J., Kim, W. J. & Lee, S. Y. Formic acid as a secondary substrate for succinic acid production by metabolically engineered Mannheimia succiniciproducens. Biotechnol. Bioeng. 114, 2837–2847 (2017).

    CAS  PubMed  Google Scholar 

  80. Grunwald, S. et al. Kinetic and stoichiometric characterization of organoautotrophic growth of Ralstonia eutropha on formic acid in fed-batch and continuous cultures. Microb. Biotechnol. 8, 155–163 (2015).

    CAS  PubMed  Google Scholar 

  81. Diender, M., Stams, A. J. M. & Sousa, D. Z. Pathways and bioenergetics of anaerobic carbon monoxide fermentation. Front. Microbiol. 6, 1275 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Bar-Even, A., Noor, E., Flamholz, A. & Milo, R. Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes. Biochim. Biophys. Acta 1827, 1039–1047 (2013).

    CAS  PubMed  Google Scholar 

  83. Bar-Even, A. Formate assimilation: the metabolic architecture of natural and synthetic pathways. Biochemistry 55, 3851–3863 (2016).

    CAS  PubMed  Google Scholar 

  84. Yishai, O., Bouzon, M., Döring, V. & Bar-Even, A. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synth. Biol. 7, 2023–2028 (2018).

    PubMed  Google Scholar 

  85. Schink, B. & Friedrich, M. Phosphite oxidation by sulphate reduction. Nature 406, 37 (2000).

    CAS  PubMed  Google Scholar 

  86. Lehtinen, T. et al. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process. Bioresour. Technol. 243, 30–36 (2017).

    CAS  PubMed  Google Scholar 

  87. Hu, P. et al. Integrated bioprocess for conversion of gaseous substrates to liquids. Proc. Natl Acad. Sci. USA 113, 14–19 (2016).

    Google Scholar 

  88. Al Rowaihi, I. S. et al. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic. Bioresour. Technol. Rep. 1, 61–68 (2018).

    Google Scholar 

  89. Cordier, J. L., Butsch, B. M., Birou, B. & von Stockar, U. The relationship between elemental composition and heat of combustion of microbial biomass. Appl. Microbiol. Biotechnol. 25, 305–312 (1987).

    CAS  Google Scholar 

  90. Pikaar, I. et al. Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: potentials and limitations. Sci. Total Environ. 644, 1525–1530 (2018).

    CAS  PubMed  Google Scholar 

  91. Spurgeon, J. M. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

    CAS  Google Scholar 

  92. Li, X. et al. Greenhouse gas emissions, energy efficiency and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer–Tropsch process. Energy Fuels 30, 5980–5989 (2016).

    CAS  Google Scholar 

  93. Delacourt, C., Ridgway, P. L., Kerr, J. B. & Newman, J. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42–B49 (2008).

    CAS  Google Scholar 

  94. Bard, A., Parsons, R. & Jordan, J. Standard Potentials in Aqueous Solution (CRC Press, Boca Raton, 1985).

  95. Del Castillo, A. et al. Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous CO2 electroreduction to formate. J. CO 2 Util. 18, 222–228 (2017).

  96. Schuster, T. & Rüdt von Collenberg, L. Investitionsrechnung: Kapitalwert, Zinsfuß, Annuität, Amortisation (Springer Gabler, Wiesbaden, 2017).

  97. Quarterly report on European Electricity Markets (European Commission, 2018); https://ec.europa.eu/energy/sites/ener/files/documents/quarterly_report_on_european_electricity_markets_q2_2018.pdf

  98. Posdziech, O. & Schwarze, K. Efficient hydrogen production for industry and electricity storage via high-temperature electrolysis. Int. J. Hydrog. Energy https://doi.org/10.1016/j.ijhydene.2018.05.169 (2018).

  99. Ebbesen, S. D., Jensen, S. H., Hauch, A. & Mogensen, M. B. High temperature electrolysis in alkaline cells, solid proton conducting cells and solid oxide cells. Chem. Rev. 114, 10697–10734 (2014).

    CAS  PubMed  Google Scholar 

  100. Patyk, A., Bachmann, T. M. & Brisse, A. Life cycle assessment of H2 generation with high temperature electrolysis. Int. J. Hydrog. Energy 38, 3865–3880 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Milo, S. Geiger, A. Gago, A. Flamholz, H. He, D. Holtmann, F. Kensy, E. Noor and A. Satanowski for helpful discussions and critical reading of the manuscript. This work received funding from the Max Planck Society and from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 763911 (Project eForFuel). N.J.C. is supported by The Netherlands Organization for Scientific Research (NWO) through a Rubicon Grant (project 019.163LW.035).

Author information

Authors and Affiliations

Authors

Contributions

A.B.-E. conceptualized and supervised the research. N.J.C., C.A.R.C. and A.B.-E. designed and performed the quantitative microbial analysis. D.K. performed the electrolysis cost analysis. N.J.C., C.A.R.C., D.K. and A.B.-E. analysed the data and wrote the paper.

Corresponding author

Correspondence to Arren Bar-Even.

Ethics declarations

Competing interests

A.B.-E. is cofounder of b.fab, exploring the commercialization of microbial bioproduction using formate as feedstock. The company was not involved in any way in performing or funding this study.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Supplementary Table 1, Supplementary references

Supplementary Data 1

Growth parameters collected from literature and calculated energetic efficiencies and electron consumption rates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Claassens, N.J., Cotton, C.A.R., Kopljar, D. et al. Making quantitative sense of electromicrobial production. Nat Catal 2, 437–447 (2019). https://doi.org/10.1038/s41929-019-0272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0272-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing