Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deciphering key intermediates in the transformation of carbon dioxide into heterocyclic products

Abstract

The identification of catalytic intermediates in the conversion of carbon dioxide is vital for improved catalyst design and optimization of structure–reactivity relationships, but remains elusive. Here, we report that intermolecular hydrogen bonding interactions between an epoxy alcohol, water and the catalyst structure are crucial towards the formation of a cyclic carbonate from carbon dioxide. A combination of multiple in situ and ex situ techniques including substrate labelling, kinetic studies, computational analysis, operando infrared spectroscopy and X-ray diffraction was applied to identify and support the structural connectivities of several previously unknown intermediates. An epoxy alcohol–water cluster formed by hydrogen bonding was identified as the initial intermediate able to trap CO2 and an elusive alkyl carbonate anion was also detected. The synergistic spectroscopic and computational analysis shown here offers a unique insight under operando conditions, as well as a useful analytical blueprint for key suggested intermediates in other mechanistically related CO2 conversion processes.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Comparison between conventional C−O coupling of CO2 using an epoxide and an approach using the hydroxyl group of the substrate.
Fig. 2: Catalytic behaviour.
Fig. 3: Gibbs free energy (B97-D3, kcal mol−1) profiles.
Fig. 4: Solid-state ATR infrared spectroscopy.
Fig. 5: Special sequence of ATR infrared measurements in solution.
Fig. 6: Operando high-pressure infrared spectroscopic analysis of the reaction between AlTHFL, GLY and CO2.

Data availability

A data set of input files and computational results is available in the ioChem-BD repository57 and can be accessed via https://doi.org/10.19061/iochem-bd-1-58. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. CCDC 1850585 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

References

  1. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    Article  Google Scholar 

  2. Wang, W.-H., Himeda, Y., Muckerman, J. T., Manbeck, G. F. & Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015).

    CAS  Article  Google Scholar 

  3. Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

    CAS  Article  Google Scholar 

  4. Artz, J. et al. Sustainable conversion of carbon dioxide: An integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    CAS  Article  Google Scholar 

  5. Álvarez, A. et al. CO2 activation over catalytic surfaces. ChemPhysChem 18, 3135–3141 (2017).

    Article  Google Scholar 

  6. Decortes, A., Castilla, A. M. & Kleij, A. W. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew. Chem. Int. Ed. 49, 9822–9837 (2010).

    CAS  Article  Google Scholar 

  7. Rintjema, J., Guo, W., Martin, E., Escudero-Adán, E. C. & Kleij, A. W. Highly chemo-selective catalytic coupling of substituted oxetanes and carbon dioxide. Chem. Eur. J. 21, 10754–10762 (2015).

    CAS  Article  Google Scholar 

  8. Yang, Z.-Z., Li, Y.-N., Wei, Y.-Y. & He, L.-N. Protic onium salts-catalyzed synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under mild conditions. Green Chem. 13, 2351–2353 (2011).

    CAS  Article  Google Scholar 

  9. Whiteoak, C. J. et al. A powerful aluminum catalyst for the synthesis of highly functional organic carbonates. J. Am. Chem. Soc. 135, 1228–1231 (2013).

    CAS  Article  Google Scholar 

  10. Yu, B. & He, L.-N. Upgrading carbon dioxide by incorporation into heterocycles. ChemSusChem 8, 52–62 (2015).

    CAS  Article  Google Scholar 

  11. Minakata, S., Sasaki, I. & Ide, T. Atmospheric CO2 fixation by unsaturated alcohols using tBuOI under neutral conditions. Angew. Chem. Int. Ed. 49, 1309–1311 (2010).

    CAS  Article  Google Scholar 

  12. Song, Q.-W., Zhou, Z.-H. & He, L.-N. Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem. 19, 3707–3728 (2017).

    CAS  Article  Google Scholar 

  13. Vara, B. A., Struble, T. J., Wang, W., Dobish, M. & Johnston, J. N. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst. J. Am. Chem. Soc. 137, 7302–7305 (2015).

    CAS  Article  Google Scholar 

  14. Song, Q.-W. & He, L.-N. Robust silver(I) catalyst for the carboxylative cyclization of propargylic alcohols with carbon dioxide under ambient conditions. Adv. Synth. Catal. 358, 1251–1258 (2016).

    CAS  Article  Google Scholar 

  15. Yoshida, S., Fukui, K., Kikuchi, S. & Yamada, T. Silver-catalyzed enantioselective carbon dioxide incorporation into bispropargylic alcohols. J. Am. Chem. Soc. 132, 4072 (2010).

    CAS  Article  Google Scholar 

  16. Martín, C., Fiorani, G. & Kleij, A. W. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal. 5, 1353–1370 (2015).

    Article  Google Scholar 

  17. Shaikh, R. R., Pornpraprom, S. & D’Elia, V. Catalytic strategies for the cycloaddition of pure, diluted, and waste CO2 to epoxides under ambient conditions. ACS Catal. 8, 419–450 (2018).

    CAS  Article  Google Scholar 

  18. Comerford, J. W., Ingram, I. D. V., North, M. & Wu, X. Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chem. 17, 1966–1987 (2015).

    CAS  Article  Google Scholar 

  19. Ishida, N., Shimamoto, Y. & Murakami, M. Solar-driven incorporation of carbon dioxide into α-amino ketones. Angew. Chem. Int. Ed. 51, 11750–11752 (2012).

    CAS  Article  Google Scholar 

  20. Rintjema, J. & Kleij, A. W. Substrate-assisted carbon dioxide activation as a versatile approach for heterocyclic synthesis. Synthesis 48, 3863–3878 (2016).

    CAS  Article  Google Scholar 

  21. Aida, T. & Inoue, S. Activation of carbon dioxide with aluminum porphyrin and reaction with epoxide. Studies on (tetraphenylporphinato)aluminum alkoxide having a long oxyalkylene chain as the alkoxide group. J. Am. Chem. Soc. 105, 1304–1309 (1983).

    CAS  Article  Google Scholar 

  22. Kojima, F., Aida, T. & Inoue, S. Fixation and activation of carbon dioxide on aluminum porphyrin. Catalytic formation of a carbamic ester from carbon dioxide, amine, and epoxide. J. Am. Chem. Soc. 108, 391–395 (1986).

    CAS  Article  Google Scholar 

  23. Castro Osma, J. A., North, M., Offermans, W. K., Leitner, W. & Müller, T. E. Unprecedented carbonato intermediates in cyclic carbonate synthesis catalysed by bimetallic aluminium(salen) complexes. ChemSusChem 9, 791–794 (2016).

    CAS  Article  Google Scholar 

  24. Rintjema, J. et al. Substrate controlled product divergence in CO2 conversion to heterocyclic products. Angew. Chem. Int. Ed. 55, 3972–3976 (2016).

    CAS  Article  Google Scholar 

  25. Laserna, V., Martin, E., Escudero-Adán, E. C. & Kleij, A. W. Substrate-triggered stereoselective preparation of highly substituted organic carbonates. ACS Catal. 7, 5478–5482 (2017).

    CAS  Article  Google Scholar 

  26. Dibenedetto, A. et al. On the existence of the elusive monomethyl ester of carbonic acid [CH3OC(O)OH] at 300 K: 1H and 13C NMR measurements and DFT calculations. Eur. J. Inorg. Chem. 2006, 908–913 (2006).

    Article  Google Scholar 

  27. Heldebrant, D. J., Jessop, P. G., Thomas, C. A., Eckert, C. A. & Liotta, C. L. The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide. J. Org. Chem. 70, 5335–5338 (2005).

    CAS  Article  Google Scholar 

  28. West, K. N. et al. In situ formation of alkylcarbonic acids with CO2. J. Phys. Chem. A 105, 3947–3948 (2001).

    CAS  Article  Google Scholar 

  29. Gassensmith, J. J. et al. Strong and reversible binding of carbon dioxide in a green metal–organic framework. J. Am. Chem. Soc. 133, 15312–15315 (2011).

    CAS  Article  Google Scholar 

  30. Jessop, P. G., Heldebrant, D. J., Li, X., Eckert, C. A. & Liotta, C. L. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 436, 1102–1102 (2005).

    CAS  Article  Google Scholar 

  31. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519, 303–308 (2015).

    CAS  Article  Google Scholar 

  32. Whiteoak, C. J., Nova, A., Maseras, F. & Kleij, A. W. Merging sustainability with organocatalysis in the formation of organic carbonates by using CO2 as a feedstock. ChemSusChem 5, 2032–2038 (2012).

    CAS  Article  Google Scholar 

  33. Gennen, S. et al. Fluorinated alcohols as activators for the solvent-free chemical fixation of carbon dioxide into epoxides. ChemSusChem 8, 1845–1849 (2015).

    CAS  Article  Google Scholar 

  34. Sopeña, S., Martín, E., Escudero-Adán, E. C. & Kleij, A. W. Pushing the limits with squaramide-based organocatalysts in cyclic carbonate synthesis. ACS Catal. 7, 3532–3539 (2017).

    Article  Google Scholar 

  35. Toda, Y., Komiyama, Y., Kikuchi, A. & Suga, H. Tetraarylphosphonium salt-catalyzed carbon dioxide fixation at atmospheric pressure for the synthesis of cyclic carbonates. ACS Catal. 6, 6906–6910 (2016).

    CAS  Article  Google Scholar 

  36. Della Monica, F., Buonerba, A., Grassi, A., Capacchione, C. & Milione, S. Glycidol: an hydroxyl-containing epoxide playing the double role of substrate and catalyst for CO2 cycloaddition reactions. ChemSusChem 9, 3457–3464 (2016).

    Article  Google Scholar 

  37. Vilotijevic, I. & Jamison, T. F. Epoxide-opening cascades promoted by water. Science 317, 1189–1192 (2007).

    CAS  Article  Google Scholar 

  38. Morten, C. J., Byers, J. A. & Jamison, T. F. Evidence that epoxide-opening cascades promoted by water are stepwise and become faster and more selective after the first cyclization. J. Am. Chem. Soc. 133, 1902–1908 (2011).

    CAS  Article  Google Scholar 

  39. Xia, Y. et al. An unexpected role of a trace amount of water in catalyzing proton transfer in phosphine-catalyzed (3 + 2) cycloaddition of allenoates and alkenes. J. Am. Chem. Soc. 129, 3470–3471 (2007).

    CAS  Article  Google Scholar 

  40. Yu, J. S., Liu, Y. L., Tang, J., Wang, X. & Zhou, J. Highly efficient “on water” catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: dramatic fluorine effects. Angew. Chem. Int. Ed. 53, 9512–9516 (2014).

    CAS  Article  Google Scholar 

  41. Shin, J. W. et al. Infrared signature of structures associated with the H+(H2O)n (n = 6 to 27) clusters. Science 304, 1137–1140 (2004).

    CAS  Article  Google Scholar 

  42. Miyazaki, M., Fujii, A., Ebata, T. & Mikami, N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004).

    CAS  Article  Google Scholar 

  43. Garczarek, F. & Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006).

    CAS  Article  Google Scholar 

  44. Seo, J., Warnke, S., Pagel, K., Bowers, M. T. & von Helden, G. Infrared spectrum and structure of the homochiral serine octamer–dichloride complex. Nat. Chem. 9, 1263–1268 (2017).

    CAS  Article  Google Scholar 

  45. Baker, M. J. et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat. Protoc. 9, 1771–1791 (2014).

    CAS  Article  Google Scholar 

  46. Adato, R. & Altug, H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4, 2154 (2013).

    Article  Google Scholar 

  47. Yang, G. & Xu, Y. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: A vibrational circular dichroism study of glycidol in water. J. Chem. Phys. 130, 164506 (2009).

    Article  Google Scholar 

  48. Conrad, A. R., Teumelsan, N. H., Wang, P. E. & Tubergen, M. J. A spectroscopic and computational investigation of the conformational structural changes induced by hydrogen bonding networks in the glycidol−water complex. J. Phys. Chem. A 114, 336–342 (2010).

    CAS  Article  Google Scholar 

  49. Cano, I., Chapman, A. M., Urakawa, A. & van Leeuwen, P. W. N. M. Air-stable gold nanoparticles ligated by secondary phosphine oxides for the chemoselective hydrogenation of aldehydes: crucial role of the ligand. J. Am. Chem. Soc. 136, 2520–2528 (2014).

    CAS  Article  Google Scholar 

  50. Urakawa, A., Jutz, F., Laurenczy, G. & Baiker, A. Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. Chem. Eur. J. 13, 3886–3899 (2007).

    CAS  Article  Google Scholar 

  51. Ema, T. et al. Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal. Sci. Technol. 5, 2314–2321 (2015).

    CAS  Article  Google Scholar 

  52. Whiteoak, C. J. et al. Highly active aluminium catalysts for the formation of organic carbonates from CO2 and oxiranes. Chem. Eur. J. 20, 2264–2275 (2014).

    CAS  Article  Google Scholar 

  53. North, M. & Pasquale, R. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem. Int. Ed. 48, 2946–2948 (2009).

    CAS  Article  Google Scholar 

  54. Darensbourg, D. J. & Yarbrough, J. C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides using a chiral salen chromium chloride catalyst. J. Am. Chem. Soc. 124, 6335–6342 (2002).

    CAS  Article  Google Scholar 

  55. Darensbourg, D. J., Yarbrough, J. C., Ortiz, C. & Fang, C. C. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. J. Am. Chem. Soc. 125, 7586–7591 (2003).

    CAS  Article  Google Scholar 

  56. Garand, E. et al. Infrared spectroscopy of hydrated bicarbonate anion clusters: HCO3 (H2O)1−10. J. Am. Chem. Soc. 132, 849–856 (2010).

    CAS  Article  Google Scholar 

  57. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by ICIQ, ICREA, the CERCA Program/Generalitat de Catalunya and the Spanish Ministerio de Economıa y Competitividad (MINECO: CTQ2012-34153, CTQ2017-88920-P and CTQ2016-75499-R (AEI/FEDER-UE), and Severo Ochoa Excellence Accreditation 2014−2018, SEV-2013-0319). R.H. thanks the COFUND postdoctoral programme of the EU. The Research Support Area of ICIQ is also thanked for their experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

A.W.K. and A.U. conceived of the project. R.H. and J.R. (equal contribution) carried out both the spectroscopic measurements and the catalytic experiments, as well as the manuscript preparation. J.G.F. and C.B. performed DFT calculations. E.M. and E.C.E-A. helped with X-ray analysis. All authors contributed to scientific discussion and revised the manuscript.

Corresponding authors

Correspondence to Carles Bo, Atsushi Urakawa or Arjan W. Kleij.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Discussion, Supplementary Figures 1–9, Supplementary Tables 1–5, Supplementary References

AlGLYL

Crystallographic data for AlGLYL complex

Supplementary Video 1

The simulated IR vibrational model of the phenolic C–O stretching band of the ligand part in the aluminum catalyst (AlTHFL) corresponding to peak 1 in Fig. 4

Supplementary Video 2

The simulated IR vibrational model of the C‒N stretching band of the ligand part in the aluminum catalyst (AlTHFL) corresponding to peak 2 in Fig. 4

Supplementary Video 3

The simulated IR vibrational model of the C‒O‒C stretching band of the THF ligand in the aluminum catalyst (AlTHFL) corresponding to peak 3 in Fig. 4

Supplementary Video 4

The simulated IR vibrational model of the phenolic O‒Al stretching band in the aluminum catalyst (AlTHFL) corresponding to peak 4 in Fig. 4

Supplementary Video 5

The simulated IR vibrational model of the O‒Al stretching band of the THF ligand in the aluminum catalyst (AlTHFL) corresponding to peak 5 in Fig. 4

Supplementary Video 6

The simulated IR vibrational model of the typical aromatic C–H band of the ligand part in the aluminum catalyst (AlTHFL) corresponding to peak 6 in Fig. 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Rintjema, J., González-Fabra, J. et al. Deciphering key intermediates in the transformation of carbon dioxide into heterocyclic products. Nat Catal 2, 62–70 (2019). https://doi.org/10.1038/s41929-018-0189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0189-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing