Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques

Abstract

Renewable energy conversion and storage play an important role in our global efforts to limit the drastic effects of climate change. In particular, the electrocatalytic reduction of carbon dioxide to chemicals and fuels can bring us closer towards a closed-loop anthropogenic carbon cycle. Significant breakthroughs are often the result of deeper understandings of reaction mechanisms, material structures and surface sites. To this end, operando techniques have been invaluable in combining advanced characterization of a catalyst with simultaneous measurements of its activity and selectivity under real working conditions. This Review aims to highlight significant progress in the use of operando characterization techniques that enhance our understanding of heterogeneous electrocatalytic CO2 reduction. We provide a summary of the most recent mechanistic understanding using operando optical, X-ray and electron-based techniques, along with key questions that need to be addressed. We conclude by offering some insight on emerging directions and prospects in the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Molecular model sketch depicting possible CO2RR roadmaps to form various C1 and C2 products.
Fig. 2: Analytical tools commonly applied in the characterization of catalyst materials.

Electron microscopy and tomography micrographs are adapted from ref. 116, Springer Nature.

Fig. 3: IR spectroscopy for operando measurements.

Figure adapted from ref. 117, RSC (ad); ref. 16, American Chemical Society (e); ref. 28, Wiley (f); and ref. 18, American Chemical Society (g).

Fig. 4: Various modifications of Raman spectroscopy setup to enable operando electrochemical measurements and improve detection sensitivity.

Figure adapted from ref. 32, American Chemical Society (a); ref. 44, Wiley (b); ref. 42, American Chemical Society (c); ref. 43, SNL (d); and ref. 20, American Chemical Society (e).

Fig. 5: X-ray techniques for operando electrochemical measurements.

Figure adapted from ref. 76, AIP Publishing (a); ref. 52, Wiley (b); ref. 59, Wiley (c); ref. 74, American Chemical Society (d); ref. 61, SNL (e); and ref. 78, RSC (f).

Fig. 6: Progress of in situ liquid phase TEM measurements.

Figure adapted from ref. 118, ECS (a,b); ref. 86, American Chemical Society (c,d); ref. 84, American Chemical Society (e,f); and ref. 88, RSC (g).

Fig. 7: Scanning-probe-microscopy-based techniques for operando electrochemical measurements.

Figure adapted from ref. 101, AAAS (ac); ref. 102, American Chemical Society (d); ref. 99, American Chemical Society (e); ref. 95, Wiley (f); and ref. 106, American Chemical Society (g).

References

  1. 1.

    UNFCCC Report of the Conference of the Parties on its Twenty-First Session, Held in Paris from 30 November to 13 December 2015 Decision 1/CP.21 (United Nations, 2015).

  2. 2.

    van Vuuren, D. P. et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

    Article  Google Scholar 

  3. 3.

    Graves, C., Ebbesen, S. D., Mogensen, M. & Lackner, K. S. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15, 1–23 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Article  Google Scholar 

  5. 5.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Goldsmith, B. R., Esterhuizen, J., Liu, J.-X., Bartel, C. J. & Sutton, C. Machine learning for heterogeneous catalyst design and discovery. AlChE J. 64, 2311–2323 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Norskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Kirk, C. et al. Theoretical investigations of the electrochemical reduction of CO on single metal atoms embedded in graphene. ACS Cent. Sci. 3, 1286–1293 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Wain, A. J. & O’Connell, M. A. Advances in surface-enhanced vibrational spectroscopy at electrochemical interfaces. Adv. Phy. X 2, 188–209 (2017).

    Google Scholar 

  12. 12.

    Yang, C. & Wöll, C. IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Adv. Phy. X 2, 373–408 (2017).

    Google Scholar 

  13. 13.

    Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Hori, Y., Koga, O., Yamazaki, H. & Matsuo, T. Infrared spectroscopy of adsorbed CO and intermediate species in electrochemical reduction of CO2 to hydrocarbons on a Cu electrode. Electrochim. Acta 40, 2617–2622 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH.ACS Catal. 8, 7507–7516 (2018). Observation of two different *CO ads geometries, and demonstration that *CO bridge is inactive for further reduction using operando IR spectroscopy. Relates to the deactivation and surface reconstruction of Cu during electrocatalysis.

    CAS  Article  Google Scholar 

  16. 16.

    Dunwell, M., Yan, Y. & Xu, B. In situ infrared spectroscopic investigations of pyridine-mediated CO2 reduction on Pt electrocatalysts. ACS Catal. 7, 5410–5419 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Sheng, W. et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci. 10, 1180–1185 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Firet, N. J. & Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 7, 606–612 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Baruch, M. F., Pander, J. E., White, J. L. & Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 5, 3148–3156 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Dutta, A., Kuzume, A., Rahaman, M., Vesztergom, S. & Broekmann, P. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study. ACS Catal. 5, 7498–7502 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    CAS  Article  Google Scholar 

  22. 22.

    Dunwell, M. et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold. J. Am. Chem. Soc. 139, 3774–3783 (2017). Demonstrates that bicarbonate is the primary source of carbon in the CO formed at the Au electrode through equilibrium exchange with dissolved CO 2 using operando ATR-SEIRAS.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Zhu, S., Jiang, B., Cai, W.-B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 139, 15664–15667 (2017).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Resasco, J., Lum, Y., Clark, E., Zeledon, J. Z. & Bell, A. T. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  27. 27.

    Lum, Y., Cheng, T., Goddard, W. A. & Ager, J. W. Electrochemical CO reduction builds solvent water into oxygenate products. J. Am. Chem. Soc. 140, 9337–9340 (2018). Demonstration of the involvement of O atoms from water in producing oxygenate products from CO 2 . This calls into question previous models of oxygenate formation as O atoms in oxygenates have always been presumed to originate from CO 2 (or CO) intermediate.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Pérez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 129, 3675–3678 (2017). The initial observation of hydrogenated CO dimer (*OCCOH) on (100) cu using operando IR spectroscopy.

    Article  Google Scholar 

  29. 29.

    Schouten, K. J. P., Qin, Z., Gallent, E. P. & Koper, M. T. M. Two pathways for the formation of ethylene in CO reduction on single-crystal copper electrodes. J. Am. Chem. Soc. 134, 9864–9867 (2012).

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Deng, Y. & Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando raman spectroscopy. ACS Catal. 7, 7873–7889 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    CAS  Article  Google Scholar 

  32. 32.

    Zeng, Z.-C. et al. Novel electrochemical Raman spectroscopy enabled by water immersion objective. Anal. Chem. 88, 9381–9385 (2016).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Yeo, B. S., Klaus, S. L., Ross, P. N., Mathies, R. A. & Bell, A. T. Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold. ChemPhysChem 11, 1854–1857 (2010).

    CAS  PubMed  Google Scholar 

  34. 34.

    Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Ren, D. et al. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 5, 2814–2821 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Oda, I., Ogasawara, H. & Ito, M. Carbon monoxide adsorption on copper and silver electrodes during carbon dioxide electroreduction studied by infrared reflection absorption spectroscopy and surface-enhanced Raman spectroscopy. Langmuir 12, 1094–1097 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    Ichinohe, Y., Wadayama, T. & Hatta, A. Electrochemical reduction of CO2 on silver as probed by surface‐enhanced Raman scattering. J. Raman Spectrosc. 26, 335–340 (1995).

    CAS  Article  Google Scholar 

  38. 38.

    Mahoney, M. R., Howard, M. W. & Cooney, R. P. Carbon dioxide conversion to hydrocarbons at silver electrode surfaces: Raman spectroscpic evidence for surface carbon intermediates. Chem. Phys. Lett. 71, 59–63 (1980).

    CAS  Article  Google Scholar 

  39. 39.

    Smith, B. D., Irish, D. E., Kedzierzawski, P. & Augustynski, J. A surface enhanced Raman scattering study of the intermediate and poisoning species formed during the electrochemical reduction of CO2 on Copper. J. Electrochem. Soc. 144, 4288–4296 (1997).

    CAS  Article  Google Scholar 

  40. 40.

    Schmitt, K. G. & Gewirth, A. A. In situ surface-enhanced Raman spectroscopy of the electrochemical reduction of carbon dioxide on silver with 3,5-diamino-1,2,4-triazole. J. Phys. Chem. C 118, 17567–17576 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Deng, Y. et al. On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuSx catalysts. ACS Appl. Mater. Interfaces 10, 28572–28581 (2018).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Zhang, Z., Sheng, S., Wang, R. & Sun, M. Tip-enhanced Raman spectroscopy. Anal. Chem. 88, 9328–9346 (2016).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Schmid, T., Yeo, B. S., Leong, G., Stadler, J. & Zenobi, R. Performing tip‐enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 40, 1392–1399 (2009).

    CAS  Article  Google Scholar 

  45. 45.

    Mondal, B., Rana, A., Sen, P. & Dey, A. Intermediates Involved in the 2e/2H+ Reduction of CO2 to CO by iron(0) porphyrin. J. Am. Chem. Soc. 137, 11214–11217 (2015).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  47. 47.

    Clausen, B. S. et al. A new procedure for particle size determination by EXAFS based on molecular dynamics simulations. J. Catal. 141, 368–379 (1993).

    CAS  Article  Google Scholar 

  48. 48.

    Eilert, A., Roberts, F. S., Friebel, D. & Nilsson, A. Formation of copper catalysts for CO2 reduction with high ethylene/methane product ratio investigated with in situ X-ray absorption spectroscopy. J. Phys. Chem. Lett. 7, 1466–1470 (2016).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    CAS  Article  Google Scholar 

  50. 50.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Weng, Z. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. 52.

    Matsui, H. et al. Operando 3d visualization of migration and degradation of a platinum cathode catalyst in a polymer electrolyte fuel cell. Angew. Chem. Int. Ed. 56, 9371–9375 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Mistry, H. et al. Enhanced carbon dioxide electroreduction to carbon monoxide over defect-rich plasma-activated silver catalysts. Angew. Chem. Int. Ed. 56, 11394–11398 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Gao, D. et al. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols. ACS Nano 11, 4825–4831 (2017).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Lum, Y. & Ager, J. W. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2018).

    CAS  Article  Google Scholar 

  56. 56.

    Velasco-Velez, J. J. et al. Photoelectron spectroscopy at the graphene–liquid interface reveals the electronic structure of an electrodeposited cobalt/graphene electrocatalyst. Angew. Chem. Int. Ed. 54, 14554–14558 (2015).

    CAS  Article  Google Scholar 

  57. 57.

    Nemšák, S. et al. Interfacial electrochemistry in liquids probed with photoemission electron microscopy. J. Am. Chem. Soc. 139, 18138–18141 (2017).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Siegbahn, H. & Siegbahn, K. ESCA applied to liquids. J. Electron. Spectrosc. Relat. Phenom. 2, 319–325 (1973).

    CAS  Article  Google Scholar 

  59. 59.

    Roy, K., Artiglia, L. & Bokhoven, J. A. V. Ambient pressure photoelectron spectroscopy: opportunities in catalysis from solids to liquids and introducing time resolution. ChemCatChem 10, 666–682 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Liu, Z. & Bluhm, H. in Hard X-ray Photoelectron Spectroscopy (HAXPES) (ed Joseph Woicik) 447–466 (Springer International Publishing, 2016).

  61. 61.

    Axnanda, S. et al. Using “tender” X-ray ambient pressure X-ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci. Rep. 5, 9788 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Eilert, A. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018). Experimental demonstration of higher Cu oxidation state using in situ soft XAS. Time-dependant spectra of Cu + at CO 2 RR relevant potentials were tracked for up to one hour.

    Article  Google Scholar 

  66. 66.

    Zakaria, S. N. A. et al. Insight into nature of iron sulfide surfaces during the electrochemical hydrogen evolution and CO2 reduction reactions. ACS Appl. Mater. Interfaces 10, 32078–32085 (2018).

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

    CAS  PubMed  Google Scholar 

  68. 68.

    Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Zhang, Y.-J. & Peterson, A. A. Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO2 reduction. Phys. Chem. Chem. Phys. 17, 4505–4515 (2015).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Garza, A. J., Bell, A. T. & Head-Gordon, M. Is subsurface oxygen necessary for the electrochemical reduction of CO2 on copper? J. Phys. Chem. Lett. 9, 601–606 (2018).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Fields, M., Hong, X., Nørskov, J. K. & Chan, K. Role of subsurface oxygen on Cu surfaces for CO2 electrochemical reduction. J. Phys. Chem. C 122, 16209–16215 (2018).

    CAS  Article  Google Scholar 

  72. 72.

    Liu, C. et al. Stability and effects of subsurface oxygen in oxide-derived Cu catalyst for CO2 reduction. J. Phys. Chem. C 121, 25010–25017 (2017).

    CAS  Article  Google Scholar 

  73. 73.

    Penner-Hahn, J. E. in eLS Ch. 2.13 (John Wiley and Sons, London, 2005).

  74. 74.

    Glatzel, P., Singh, J., Kvashnina, K. O. & van Bokhoven, J. A. In situ characterization of the 5d density of states of Pt nanoparticles upon adsorption of CO. J. Am. Chem. Soc. 132, 2555–2557 (2010).

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    van Schooneveld, M. M. et al. A multispectroscopic study of 3d orbitals in cobalt carboxylates: the high sensitivity of 2p3d resonant X-ray emission spectroscopy to the ligand field. Angew. Chem. Int. Ed. 52, 1170–1174 (2012).

    Article  CAS  Google Scholar 

  76. 76.

    Ishihara, T., Tokushima, T., Horikawa, Y., Kato, M. & Yagi, I. Development of a spectro-electrochemical cell for soft X-ray photon-in photon-out spectroscopy. Rev. Sci. Instrum. 88, 104101 (2017).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Chang, K. C. et al. in In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis (eds Sun, S.-G., Christensen, P. A. & Wieckowski, A.) 383–407 (Elsevier Science, New York, 2007).

  78. 78.

    Gul, S. et al. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry. Phys. Chem. Chem. Phys. 17, 8901–8912 (2015). Demonstration of the feasibility of operando XES in tracking the chemical state of multi-component electrocatalysts during the oxygen evolution reaction.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Liu, Y., Barbour, A., Komanicky, V. & You, H. X-ray crystal truncation rod studies of surface oxidation and reduction on Pt(111). J. Phys. Chem. C 120, 16174–16178 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    Bouldin, C. E. et al. Diffraction anomalous fine structure: XAFS with virtual photoelectrons. Jpn J. Appl. Phys. 32, 198 (1993).

    CAS  Article  Google Scholar 

  81. 81.

    Kawaguchi, T. et al. Roles of transition metals interchanging with lithium in electrode materials. Phys. Chem. Chem. Phys. 17, 14064–14070 (2015).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    He, J., Johnson, N. J. J., Huang, A. & Berlinguette, C. P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 11, 48–57 (2018).

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Mehdi, B. L. et al. Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical (S)TEM. Nano Lett. 15, 2168–2173 (2015).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Hodnik, N., Dehm, G. & Mayrhofer, K. J. J. Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc. Chem. Res. 49, 2015–2022 (2016).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Mierwaldt, D. et al. Environmental TEM investigation of electrochemical stability of perovskite and ruddlesden–popper type manganite oxygen evolution catalysts. Adv. Sustain. Syst. 1, 1700109 (2017).

    Article  CAS  Google Scholar 

  86. 86.

    Mildner, S. et al. Environmental TEM study of electron beam induced electrochemistry of Pr0.64Ca0.36MnO3 catalysts for oxygen evolution. J. Phys. Chem. C 119, 5301–5310 (2015).

    CAS  Article  Google Scholar 

  87. 87.

    Yu, Y. et al. Three-dimensional tracking and visualization of hundreds of Pt−Co fuel cell nanocatalysts during electrochemical aging. Nano Lett. 12, 4417–4423 (2012).

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Zhang, D. et al. An in situ TEM study of the surface oxidation of palladium nanocrystals assisted by electron irradiation. Nanoscale 9, 6327–6333 (2017).

    CAS  PubMed  Article  Google Scholar 

  89. 89.

    Mancera, L. A., Behm, R. J. & Groβ, A. Structure and local reactivity of PdAg/Pd(111) surface alloys. Phys. Chem. Chem. Phys. 15, 1497–1508 (2013).

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Ustarroz, J. et al. Electrodeposition of highly porous Pt nanoparticles studied by quantitative 3D electron tomography: influence of growth mechanisms and potential cycling on the active surface area. ACS Appl. Mater. Interfaces 9, 16168–16177 (2017).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  Google Scholar 

  92. 92.

    Itaya, K. & Tomita, E. Scanning tunneling microscope for electrochemistry - a new concept for the in situ scanning tunneling microscope in electrolyte solutions. Surf. Sci. 201, L507–L512 (1988).

    CAS  Article  Google Scholar 

  93. 93.

    Kim, Y.-G., Baricuatro, J. H., Javier, A., Gregoire, J. M. & Soriaga, M. P. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operando EC-STM. Langmuir 30, 15053–15056 (2014).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Grosse, P. et al. Dynamic changes in the structure, chemical state and catalytic selectivity of Cu nanocubes during CO2 electroreduction. Angew. Chem. Int. Ed. 57, 6192–6197 (2018). Dynamic morphological and chemical monitoring of Cu cubes during CO 2 RR using operando EC-AFM and EXAFS. Roughening, loss of (100) facets and loss of Cu atoms from edge and corner sites, and the reduction of CuO x species were observed, concommitant with reduced CO 2 RR activity.

    CAS  Article  Google Scholar 

  96. 96.

    Nellist, M. R. et al. Potential-sensing electrochemical atomic force microscopy for in operando analysis of water-splitting catalysts and interfaces. Nat. Energy 3, 46–52 (2018).

    CAS  Article  Google Scholar 

  97. 97.

    Jung, C., Sánchez-Sánchez, C. M., Lin, C.-L., Rodríguez-López, J. & Bard, A. J. Electrocatalytic activity of Pd−Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy. Anal. Chem. 81, 7003–7008 (2009).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Bard, A. J., Fan, F. R. F., Kwak, J. & Lev, O. Scanning electrochemical microscopy. Introduction and principles.Anal. Chem. 61, 132–138 (1989).

    CAS  Article  Google Scholar 

  99. 99.

    Lucas, M. & Boily, J.-F. Mapping electrochemical heterogeneity at iron oxide surfaces: a local electrochemical impedance study. Langmuir 31, 13618–13624 (2015).

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Sreekanth, N. & Phani, K. L. Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. Chem. Commun. 50, 11143–11146 (2014).

    CAS  Article  Google Scholar 

  101. 101.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).The initial experimental demonstration of heightened CO 2 RR activity at the grain boundary using SECM, as corroborated by electron backscattering diffraction (EBSD) grain mapping.

    CAS  PubMed  Article  Google Scholar 

  102. 102.

    Kai, T., Zhou, M., Duan, Z., Henkelman, G. A. & Bard, A. J. Detection of CO2 •– in the electrochemical reduction of carbon dioxide in N,N-dimethylformamide by scanning electrochemical microscopy. J. Am. Chem. Soc. 139, 18552–18557 (2017). Detection of CO 2 radical on Au substrate using SECM based on Hg/Pt ultra micro electrode. This is probably the initial experimental observation of CO 2 radical, which is extremely challenging due to the short lifetime of CO 2 radical and its reactivity with proton donors.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Lertanantawong, B. et al. Study of the underlying electrochemistry of polycrystalline gold electrodes in aqueous solution and electrocatalysis by large amplitude fourier transformed alternating current voltammetry. Langmuir 24, 2856–2868 (2008).

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Zhang, J., Guo, S.-X., Bond, A. M. & Marken, F. Large-amplitude Fourier transformed high-harmonic alternating current cyclic voltammetry: kinetic discrimination of interfering faradaic processes at glassy carbon and at boron-doped diamond electrodes. Anal. Chem. 76, 3619–3629 (2004).

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Guo, S. X., MacFarlane, D. R. & Zhang, J. Bioinspired electrocatalytic CO2 reduction by bovine serum albumin-capped silver nanoclusters mediated by [α‐SiW12O40]4−. ChemSusChem 9, 80–87 (2016).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Zhang, Y. et al. Direct detection of electron transfer reactions underpinning the tin-catalyzed electrochemical reduction of CO2 using Fourier-transformed ac voltammetry. ACS Catal. 7, 4846–4853 (2017).

    CAS  Article  Google Scholar 

  107. 107.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016). This work exploits the presence of charged reactant and intermediates, and demonstrates that CO 2 RR activity can be enhanced by altering the local concentration of reactant due to the effect of electric field concentration on sharp tipped surfaces.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Huang, S. et al. Molecular selectivity of graphene-enhanced raman scattering. Nano Lett. 15, 2892–2901 (2015).

    CAS  PubMed  Article  Google Scholar 

  109. 109.

    Rehn, S. M. & Jones, M. R. New strategies for probing energy systems with in situ liquid-phase transmission electron microscopy. ACS Energy Lett. 3, 1269–1278 (2018).

    CAS  Article  Google Scholar 

  110. 110.

    Schneider, N. M. et al. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118, 22373–22382 (2014).

    CAS  Article  Google Scholar 

  111. 111.

    Wu, J. et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat. Commun. 7, 13869 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Ulissi, Z. W. et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal. 7, 6600–6608 (2017).

    CAS  Article  Google Scholar 

  114. 114.

    de Groot, F. High-resolution X-ray emission and x-ray absorption spectroscopy. Chem. Rev. 101, 1779–1808 (2001).

    PubMed  Article  CAS  Google Scholar 

  115. 115.

    Artrith, N. & Kolpak, A. M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of dft and accurate neural network potentials. Nano Lett. 14, 2670–2676 (2014).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Handoko, A. D. et al. Elucidation of thermally induced internal porosity in zinc oxide nanorods. Nano Res. 11, 2412–2423 (2018).

    CAS  Article  Google Scholar 

  117. 117.

    Zaera, F. Infrared absorption spectroscopy of adsorbed CO: new applications in nanocatalysis for an old approach. ChemCatChem 4, 1525–1533 (2012).

    CAS  Article  Google Scholar 

  118. 118.

    Fahrenkrug, E., Alsem, D. H., Salmon, N. & Maldonado, S. Electrochemical measurements in in situ TEM experiments. J. Electrochem. Soc. 164, H358–H364 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute of Materials Research and Engineering, A*STAR (IMRE/17-1R1211) and the National University of Singapore (R-143-000-A08-114).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhi Wei Seh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Note 1, Supplementary Tables 1–3 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Handoko, A.D., Wei, F., Jenndy et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat Catal 1, 922–934 (2018). https://doi.org/10.1038/s41929-018-0182-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing