Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst

Abstract

The discovery of materials for the electrochemical transformation of carbon dioxide into liquid fuels has the potential to impact large-scale storage of renewable energies and reduce carbon emissions. Here, we report the discovery of an electrocatalyst composed of gold nanoparticles on a polycrystalline copper foil (Au/Cu) that is highly active for CO2 reduction to alcohols. At low overpotentials, the Au/Cu electrocatalyst is over 100 times more selective for the formation of products containing C–C bonds versus methane or methanol, largely favouring the generation of alcohols over hydrocarbons. A combination of electrochemical testing and transport modelling supports the hypothesis that CO2 reduction on gold generates a high CO concentration on nearby copper, where CO is further reduced to alcohols such as ethanol and n-propanol under locally alkaline conditions. The bimetallic Au/Cu electrocatalyst exhibits synergistic activity and selectivity superior to gold, copper or AuCu alloys, and opens new possibilities for the development of CO2 reduction electrodes exploiting tandem catalysis mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Physical characterization of Au/Cu.
Fig. 2: Catalytic performance of Au/Cu, copper and gold catalysts.
Fig. 3: CO2 consumption and CO production rates as a function of the potential.
Fig. 4: Product selectivity and activity for >2e C1 and C2+ products on copper and Au/Cu electrodes.
Fig. 5: Catalytic activity of copper and copper bimetallic catalysts for >2e products.

Data availability

The data that support the results and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Whipple, D. & Kenis, P. Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J. Phys. Chem. Lett. 1, 3451–3458 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Arakawa, H. et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem. Rev. 101, 953–996 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    Qiao, J., Liu, Y., Hong, F. & Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Hori, Y., Vayenas, C., White, R. & Gamboa-Aldeco, M. Electrochemical CO2 reduction on metal electrodes. Mod. Aspects Electroc. 42, 89–189 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Kuhl, K. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Hatsukade, T., Kuhl, K., Cave, E., Abram, D. & Jaramillo, T. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014).

    CAS  Article  Google Scholar 

  8. 8.

    Torelli, D. et al. Nickel–gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials. ACS Catal. 6, 2100–2104 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Hori, Y. & Murata, A. Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO2 at a nickel electrode. Electrochim. Acta 35, 1777–1780 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    Song, Y. et al. High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1, 6055–6061 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Hoang, T., Ma, S., Gold, J., Kenis, P. & Gewirth, A. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 7, 3313–3321 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Li, C., Ciston, J. & Kanan, M. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Ren, D., Ang, B. & Yeo, B. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Sun, H., Yu, M., Wang, G., Sun, X. & Lian, J. Temperature-dependent morphology evolution and surface plasmon absorption of ultrathin gold island films. J. Phys. Chem. C 116, 9000–9008 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Guisbiers, G. et al. Gold-copper nano-alloy, "Tumbaga", in the era of nano: phase diagram and segregation. Nano Lett. 14, 6718–6726 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Lum, Y. & Ager Joel, W. Stability of residual oxides in oxide‐derived copper catalysts for electrochemical CO2 reduction investigated with 18O labeling. Angew. Chem. Int. Ed. 57, 551–554 (2017).

    Article  Google Scholar 

  20. 20.

    Ikemiya, N., Kubo, T. & Hara, S. In-situ AFM observations of oxide film formation on Cu(111) and Cu(100) surfaces under aqueous alkaline-solutions. Surf. Sci. 323, 81–90 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  Google Scholar 

  22. 22.

    Eilert, A. et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J. Phys. Chem. Lett. 8, 285–290 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Manthiram, K., Surendranath, Y. & Alivisatos, A. Dendritic assembly of gold nanoparticles during fuel-forming electrocatalysis. J. Am. Chem. Soc. 136, 7237–7240 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Wang, J. et al. Formation, migration, and reactivity of Au–CO complexes on gold surfaces. J. Am. Chem. Soc. 138, 1518–1526 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Kim, Y., Baricuatro, J., Javier, A., Gregoire, J. & Soriaga, M. The evolution of the polycrystalline copper surface, first to Cu(111) and then to Cu(100), at a fixed CO2RR potential: a study by operand EC-STM. Langmuir 30, 15053–15056 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Papanicolaou, N. & Evangelakis, G. in Surface Diffusion (ed. Tringides, M. C.) 75–81 (NATO ASI Series B 360, Springer, Boston, MA, 1997).

  27. 27.

    Balerna, A. et al. Extended X-ray absorption fine-structure and near-edge-structure studies on evaporated small clusters of Au. Phys. Rev. B 31, 5058–5065 (1985).

    CAS  Article  Google Scholar 

  28. 28.

    Cave, E. R. et al. Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products. Phys. Chem. Chem. Phys. 19, 15856–15863 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Benck, J., Hellstern, T., Kibsgaard, J., Chakthranont, P. & Jaramillo, T. Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catal. 4, 3957–3971 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Jia, F., Yu, X. & Zhang, L. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu–Au alloy as catalyst. J. Power Sources 252, 85–89 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Andrews, E. et al. Electrochemical reduction of CO2 at Cu nanocluster / (1010) ZnO electrodes. J. Electrochem. Soc. 160, H841–H846 (2013).

    CAS  Article  Google Scholar 

  32. 32.

    Peterson, A. & Norskov, J. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Kim, D. et al. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 139, 8329–8336 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    Kim, D., Resasco, J., Yu, Y., Asiri, A. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 5948 (2014).

    Google Scholar 

  36. 36.

    Mistry, H., Reske, R., Strasser, P. & Roldan Cuenya, B. Size-dependent reactivity of gold–copper bimetallic nanoparticles during CO2 electroreduction. Catal. Today 288, 30–36 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Monzo, J. et al. Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO2 reduction. J. Mater. Chem. A 3, 23690–23698 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Gupta, N., Gattrell, M. & MacDougall, B. Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions. J. Appl. Electrochem. 36, 161–172 (2006).

    CAS  Article  Google Scholar 

  39. 39.

    Goodpaster, J., Bell, A. & Head-Gordon, M. Identification of possible pathways for C–C bond formation during electrochemical reduction of CO2: new theoretical insights from an improved electrochemical model. J. Phys. Chem. Lett. 7, 1471–1477 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Montoya, J., Peterson, A. & Norskov, J. Insights into CC coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Perez-Gallent, E., Figueiredo, M., Calle-Vallejo, F. & Koper, M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Akhade, S. et al. Poisoning effect of adsorbed CO during CO2 electroreduction on late transition metals. Phys. Chem. Chem. Phys. 16, 20429–20435 (2014).

    CAS  Article  Google Scholar 

  44. 44.

    Hori, Y., Murata, A., Ito, S.-y, Yoshinami, Y. & Koga, O. Nickel and iron modified copper electrode for electroreduction of CO2 by in-situ electrodeposition. Chem. Lett. 18, 1567–1570 (1989).

    Article  Google Scholar 

  45. 45.

    He, J., Johnson Noah, J. J., Huang, A. & Berlinguette Curtis, P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 11, 48–57 (2017).

    Article  Google Scholar 

  46. 46.

    Watanabe, M., Shibata, M., Kato, A., Azuma, M. & Sakata, T. Design of alloy electrocatalysts for CO2 reduction: III. The selective and reversible reduction of CO2 on Cu alloy electrodes. J. Electrochem. Soc. 138, 3382–3389 (1991).

    CAS  Article  Google Scholar 

  47. 47.

    Chen, C. S., Wan, J. H. & Yeo, B. S. Electrochemical reduction of carbon dioxide to ethane using nanostructured Cu2O-derived copper catalyst and palladium(II) chloride. J. Phys. Chem. C 119, 26875–26882 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Varela, A. S. et al. CO2 electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J. Phys. Chem. C 117, 20500–20508 (2013).

    CAS  Article  Google Scholar 

  49. 49.

    Verma, S., Lu, X., Ma, S., Masel, R. & Kenis, P. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys. Chem. Chem. Phys. 18, 7075–7084 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    Resasco, J., Lum, Y., Clark, E., Zeledon, J. & Bell, A. Effects of anion identity and concentration on electrochemical reduction of CO2. ChemElectroChem 5, 1064–1072 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  Article  Google Scholar 

  52. 52.

    Hori, Y., Takahashi, R., Yoshinami, Y. & Murata, A. Electrochemical reduction of CO at a copper electrode. J. Phys. Chem. B 101, 7075–7081 (1997).

    CAS  Article  Google Scholar 

  53. 53.

    Varela, A. et al. pH effects on the selectivity of the electrocatalytic CO2 reduction on graphene-embedded Fe–N–C motifs: bridging concepts between molecular homogeneous and solid-state heterogeneous catalysis. ACS Energy Lett. 3, 812–817 (2018).

    CAS  Article  Google Scholar 

  54. 54.

    Schouten, K., Gallent, E. & Koper, M. The influence of pH on the reduction of CO and CO2 to hydrocarbons on copper electrodes. J. Electroanal. Chem. 716, 53–57 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    Billy, J. & Co, A. Experimental parameters influencing hydrocarbon selectivity during the electrochemical conversion of CO2. ACS Catal. 7, 8467–8479 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This material is based on work performed by the Joint Center for Artificial Photosynthesis, a Department of Energy (DOE) Energy Innovation Hub, as follows: the development of electrochemical testing was supported through the Office of Science of the US DOE under award number DE-SC0004993; the development of the gold on copper morphology and the physical characterization of catalysts were supported by the National Science Foundation under grant number 1066515 and by the Global Climate Energy Project at Stanford University. The work of C.G.M.-G. was supported by the Swiss National Science Foundation (grant number P2ELP2_168600). E.R.C. acknowledges support from the National Science Foundation Graduate Research Fellowship under grant number DGE-1147470 and from a Ford Foundation Fellowship. L.W. thanks the Knut and Alice Wallenberg Foundation for financial support. We thank the Stanford NMR Facility and the Stanford Nano Shared Facilities for use of their shared facilities. In particular, we thank T. Carver from the Flexible Cleanroom at the Stanford Nano Shared Facilities for his role in depositing the gold nanoparticles and A. Vailionis at the Stanford Nanocharacterization Laboratory for assistance with the XRD measurements.

Author information

Affiliations

Authors

Contributions

C.G.M.-G. and E.R.C. synthesized the Au/Cu catalyst and performed the electrochemistry experiments. J.T.F., K.P.K., D.N.A. and T.H. conducted the electrochemistry experiments. L.W. designed and guided the electrochemistry experiments using carbon monoxide. S.A.N. compared the state-of-the-art bimetallic copper catalysts. C.G.M.-G., E.R.C. and L.W. carried out the SEM and XPS experiments. A.J. and N.C.J. performed the TEM experiments. C.G.M.-G. developed the mass transfer mathematical model. All authors analysed the data. T.F.J. and C.H. conceived the project and supervised the research work. C.G.M.-G., E.R.C., C.H. and T.F.J. wrote the manuscript with input from the other authors.

Corresponding authors

Correspondence to Christopher Hahn or Thomas F. Jaramillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–20, Supplementary Notes 1–3 and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales-Guio, C.G., Cave, E.R., Nitopi, S.A. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat Catal 1, 764–771 (2018). https://doi.org/10.1038/s41929-018-0139-9

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing