A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene


Photocatalysis based on the use of semiconducting materials is an emerging alternative to conventional thermochemical catalysis, and it has the potential to promote chemical synthesis under greener and milder conditions. However, heterogeneous photocatalytic organic reactions are still in their infancy, limited by the low-efficiency carrier separation of the currently available photocatalytic materials. Here, we report photochromic Bi2WO6–x/amorphous BiOCl (p-BWO) nanosheets, which, distinct from pristine Bi2WO6, show blue colouration upon visible light irradiation and are bleached by atmospheric oxygen. Studies on the microscopic structure of the material reveal the existence of abundant W(vi)O6–x units, which serve as the sites for the fast and continuous consumption of photogenerated electrons, thereby effectively facilitating the separation of electron–hole pairs. The prepared composite features a remarkable enhancement in performance for the photocatalytic oxidation of toluene with a conversion rate 166-fold higher compared with that of pristine Bi2WO6.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Characterization of p-BWO and pristine Bi2WO6.
Fig. 2: Photocatalytic oxidation of toluene.
Fig. 3: Catalytic performance of p-BWO and pristine Bi2WO6.
Fig. 4: Atomic-resolution structure characterization and SAED patterns of the p-BWO.
Fig. 5: Raman and XAFS characterization for Bi2WO6 and the p-BWO sample series.
Fig. 6: Energy band scheme, microscopic structure and working mechanism of p-BWO.


  1. 1.

    Hao, C. H. et al. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts. J. Am. Chem. Soc. 138, 9361–9364 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Huang, Y. M. et al. Stable copper nanoparticle photocatalysts for selective epoxidation of alkenes with visible light. ACS Catal. 7, 4975–4985 (2017).

    Article  CAS  Google Scholar 

  3. 3.

    Chai, Z. et al. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 138, 10128–10131 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Huang, W. et al. Visible-light-promoted selective oxidation of alcohols using a covalent triazine framework. ACS Catal. 7, 5438–5442 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Zhang, N. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Ravelli, D., Dondi, D., Fagnoni, M. & Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 38, 1999–2011 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Yu, Z. et al. Photocatalytic hydrogenation of nitroarenes using Cu1.94S–Zn0.23Cd0.77S heteronanorods. Nano Res. 11, 3730–3738 (2018).

  8. 8.

    Nicewicz, D. A. & MacMillan, D. W. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Gao, C., Wang, J., Xu, H. & Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 46, 2799–2823 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Marschall, R. Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 24, 2421–2440 (2014).

    Article  CAS  Google Scholar 

  12. 12.

    Huang, J. et al. Oxyhydroxide nanosheets with highly efficient electron–hole pair separation for hydrogen evolution. Angew. Chem. Int. Ed. Engl. 55, 2137–2141 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Pan, X. Y. et al. Design synthesis of nitrogen-doped TiO2@carbon nanosheets toward selective nitroaromatics reduction under mild conditions. ACS Catal. 7, 6991–6998 (2017).

    Article  CAS  Google Scholar 

  14. 14.

    Fu, Y. S., Huang, T., Jia, B. Q., Zhu, J. W. & Wang, X. Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g–C3N4 contact system. Appl. Catal. B 202, 430–437 (2017).

    Article  CAS  Google Scholar 

  15. 15.

    Yuan, R. et al. Chlorine-radical-mediated photocatalytic activation of C–H bonds with visible light. Angew. Chem. Int. Ed. Engl. 52, 1035–1039 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Tripathy, J., Lee, K. & Schmuki, P. Tuning the selectivity of photocatalytic synthetic reactions using modified TiO2 nanotubes. Angew. Chem. Int. Ed. Engl. 53, 12605–12608 (2014).

    CAS  PubMed  Google Scholar 

  17. 17.

    Yu, S., Kim, Y. H., Lee, S. Y., Song, H. D. & Yi, J. Hot-electron-transfer enhancement for the efficient energy conversion of visible light. Angew. Chem. Int. Ed. Engl. 53, 11203–11207 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Li, H. J., Zhou, Y., Tu, W. G., Ye, J. H. & Zou, Z. G. State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015).

    Article  CAS  Google Scholar 

  19. 19.

    Li, J., Dong, Xa, Sun, Y., Cen, W. & Dong, F. Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts. Appl. Catal. B 226, 269–277 (2018).

    Article  CAS  Google Scholar 

  20. 20.

    Chen, Y. et al. Synergetic integration of Cu1.94S–ZnxCd1– xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 138, 4286–4289 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Xiang, Q., Cheng, B. & Yu, J. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. Engl. 54, 11350–11366 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Yuan, Y.-P., Ruan, L.-W., Barber, J., Joachim Loo, S. C. & Xue, C. Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ. Sci. 7, 3934–3951 (2014).

    Article  CAS  Google Scholar 

  23. 23.

    Yan, P. et al. Photovoltaic device based on TiO2 rutile/anatase phase junctions fabricated in coaxial nanorod arrays. Nano Energy 15, 406–412 (2015).

    Article  CAS  Google Scholar 

  24. 24.

    Low, J., Yu, J., Jaroniec, M., Wageh, S. & Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Kesavan, L. et al. Solvent-free oxidation of primary carbon–hydrogen bonds in toluene using Au–Pd alloy nanoparticles. Science 331, 195–199 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Zhou, Y. et al. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 6, 8340 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Nie, Z.-P., Ma, D.-K., Fang, G.-Y., Chen, W. & Huang, S.-M. Concave Bi2WO6 nanoplates with oxygen vacancies achieving enhanced electrocatalytic oxygen evolution in near-neutral water. J. Mater. Chem. A 4, 2438–2444 (2016).

    Article  CAS  Google Scholar 

  28. 28.

    Yao, J. N., Hashimoto, K. & Fujishima, A. Photochromism induced in an electrolytically pretreated MoO3 thin-film by visible-light. Nature 355, 624–626 (1992).

    Article  CAS  Google Scholar 

  29. 29.

    He, T. & Yao, J. N. Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007).

    Article  CAS  Google Scholar 

  30. 30.

    Bi, W. et al. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution. Nat. Commun. 6, 8647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhang, W. et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat. Catal. 1, 55–62 (2018).

    Article  PubMed  Google Scholar 

  32. 32.

    Kaeding, W. W., Lindblom, R. O., Temple, R. G. & Mahon, H. I. Oxidation of toluene and other alkylated aromatic hydrocarbons to benzoic acids and phenols. Ind. Eng. Chem. Process Des. Dev. 4, 97–101 (1965).

    Article  CAS  Google Scholar 

  33. 33.

    Li, H. et al. New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Zhang, Z. et al. A nonmetal plasmonic Z-scheme photocatalyst with UV- to NIR-driven photocatalytic protons reduction. Adv. Mater. 29, 1606688–1606696 (2017).

    Article  CAS  Google Scholar 

  35. 35.

    Lou, Z. et al. Continual injection of photoinduced electrons stabilizing surface plasmon resonance of non-elemental-metal plasmonic photocatalyst CdS/WO3−x for efficient hydrogen generation. Appl. Catal. B 226, 10–15 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Li, H., Li, J., Ai, Z., Jia, F. & Zhang, L. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. Engl. 57, 122–138 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Zhang, N., Ciriminna, R., Pagliaro, M. & Xu, Y. J. Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 43, 5276–5287 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Li, J., Yu, Y. & Zhang, L. Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Cheng, H. et al. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol. Chem. Commun. 48, 9729–9731 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    Zhang, J., Wang, T., Chang, X., Li, A. & Gong, J. Fabrication of porous nanoflake BiMOx (M = W, V, and Mo) photoanodes via hydrothermal anion exchange. Chem. Sci. 7, 6381–6386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ma, Y. C., Chen, Z. W., Qu, D. & Shi, J. S. Synthesis of chemically bonded BiOCl@Bi2WO6 microspheres with exposed (020) Bi2WO6 facets and their enhanced photocatalytic activities under visible light irradiation. Appl. Surf. Sci. 361, 63–71 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Guan, M. et al. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135, 10411–10417 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Santos, V. P., Bakker, J. J. W., Kreutzer, M. T., Kapteijn, F. & Gascon, J. Transport limitations during phase transfer catalyzed ethyl-benzene oxidation: facts and fictions of “halide catalysis”. ACS Catal. 2, 1421–1424 (2012).

    Article  CAS  Google Scholar 

  44. 44.

    Santato, C., Odziemkowski, M., Ulmann, M. & Augustynski, J. Crystallographically oriented mesoporous WO3 films: synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639–10649 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Arnoldussen, T. C. A model for electrochromic tungstic oxide microstructure and degradation. J. Electrochem. Soc. 128, 117–123 (1981).

    Article  CAS  Google Scholar 

  46. 46.

    Yang, Y. A., M., Y., Yao, J. N. & Loo, B. H. Simulation of the sublimation process in the preparation of photochromic WO3 film by laser microprobe mass spectrometry. J. Non-Cryst. Solids 272, 71–74 (2000).

    Article  CAS  Google Scholar 

  47. 47.

    Shi, R., Huang, G., Lin, J. & Zhu, Y. Photocatalytic activity enhancement for Bi2WO6 by fluorine substitution. J. Phys. Chem. C 113, 19633–19638 (2009).

    Article  CAS  Google Scholar 

  48. 48.

    Kongmark, C. et al. A comprehensive scenario of the crystal growth of gamma-Bi2MoO6 catalyst during hydrothermal synthesis. Cryst. Growth Des. 12, 5994–6003 (2012).

    Article  CAS  Google Scholar 

  49. 49.

    Kleperis, J. J., Cikmach, P. D. & Lusis, A. R. Colour centres in amorphous tungsten trioxide thin films. Phys. Status Solidi A 83, 291–297 (1984).

    Article  CAS  Google Scholar 

  50. 50.

    Wu, Q. et al. Ultra-small yellow defective TiO2 nanoparticles for co-catalyst free photocatalytic hydrogen production. Nano Energy 24, 63–71 (2016).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China (2017YFA0700101 and 2016YFA0202801) and National Natural Science Foundation of China (numbers 21325101, 21231005, 21573119 and 21590792). We thank the 1W1B station for XAFS measurements at the Beijing Synchrotron Radiation Facility.

Author information




X.C., Z.C., R.L., W-C.C., S.L. and J.Z. performed the experimental work and analysed the results. T.H., X.T., Y.W., R.S., D.W. and W.Z. discussed and provided advice on the work. X.C., Z.C., Q.P., C.C. and Y.L. conceived and designed the experiments. All authors co-wrote the manuscript.

Corresponding authors

Correspondence to Qing Peng or Chen Chen or Yadong Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Tables 1–6; Supplementary Figures 1–33; Supplementary Note; Supplementary References

Supplementary Video 1

Supplementary Video 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Chen, Z., Lin, R. et al. A photochromic composite with enhanced carrier separation for the photocatalytic activation of benzylic C–H bonds in toluene. Nat Catal 1, 704–710 (2018). https://doi.org/10.1038/s41929-018-0128-z

Download citation

Further reading