Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Branched aldehydes as linchpins for the enantioselective and stereodivergent synthesis of 1,3-aminoalcohols featuring a quaternary stereocentre

Abstract

The atom-economic conversion of chemical feedstocks into biologically relevant complex molecules in a stereocontrolled fashion remains a continuous challenge to synthetic chemists. In this context, the use of simple ambiphilic starting materials as linchpins allows a bidirectional increase of molecular complexity from widely available precursors. Here, we report the use of branched aldehydes as versatile linchpins for various Zn-ProPhenol-catalysed C–C bond-forming reactions to efficiently construct enantioenriched 1,3-aminoalcohols bearing an acyclic quaternary stereogenic centre. The ability of the Zn-ProPhenol catalyst to selectively activate ambiphilic aldehydes first as nucleophiles for Mannich reactions and then as electrophiles for aldol, Henry and alkyne addition reactions allows for the one-pot synthesis of complex stereotriads from common building blocks. Moreover, this approach can be diastereodivergent by simply selecting the proper catalyst combination. Overall, this catalytic method directly transforms simple and readily available aldehydes into highly functionalized compounds and provides streamlined access to valuable 1,3-aminoalcohols relevant to the synthesis of biologically important molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and reaction development.
Fig. 2: Enantioselective Mannich reaction between branched aldehydes and Boc- or Cbz-imines.
Fig. 3: Asymmetric sequential Mannich/aldol reactions of aldehydes.
Fig. 4: Stereodivergent synthesis of 1,3-aminoalcohols.
Fig. 5: Diastereodivergent process using other nucleophiles.
Fig. 6: Synthetic applications of enantio- and diastereoenriched 1,3-aminoalcohols.

Similar content being viewed by others

References

  1. Trost, B. M. The atom economy—a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  Google Scholar 

  2. Zbieg, J. R., Yamaguchi, E., McInturff, E. L. & Krische, M. J. Enantioselective C–H crotylation of primary alcohols via hydrohydroxyalkylation of butadiene. Science 336, 324–327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith, A. B. III et al. Multicomponent linchpin couplings. Reaction of dithiane anions with terminal epoxides, epichlorohydrin, and vinyl epoxides: efficient, rapid, and stereocontrolled assembly of advanced fragments for complex molecule synthesis. J. Am. Chem. Soc. 125, 14435–14445 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Krautwald, S. & Carreira, E. M. Stereodivergence in asymmetric synthesis. J. Am. Chem. Soc. 139, 5627–5639 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Jin, Z. Amaryllidacea and sceletium alkaloids. Nat. Prod. Rep. 24, 886–905 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Lait, S. M., Rankic, D. A. & Keay, B. A. 1,3-Aminoalcohols and their derivatives in asymmetric organic synthesis. Chem. Rev. 107, 767–796 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Joannesse, C. et al. Isothiourea-catalyzed enatioselective carboxy group transfer. Angew. Chem. Int. Ed. 48, 8914–8918 (2009).

    Article  CAS  Google Scholar 

  9. Shi, S.-L., Wong, Z. L. & Buchwald, S. L. Copper-catalyzed enantioselective stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary stereocentres. Nature 516, 181–191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2016).

    Article  CAS  Google Scholar 

  12. Prakash, J. & Marek, I. Enantioselective synthesis of all-carbon quaternary stereogenic center in acyclic systems. Chem. Commun. 47, 4593–4623 (2011).

    Article  CAS  Google Scholar 

  13. Minko, Y. & Marek, I. Stereodefined acyclic trisubstituted metal enolates towards the asymmetric formation of quaternary carbon stereocentres. Chem. Commun. 50, 12597–12611 (2014).

    Article  CAS  Google Scholar 

  14. Marek, I. et al. All-carbon stereogenic centers in acyclic systems through the creation of several C–C bonds per chemical step. J. Am. Chem. Soc. 136, 2682–2694 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Melchiorre, P. Cinchona-based primary amine catalysis in the asymmetric functionalization of carbonyl compounds. Angew. Chem. Int. Ed. 51, 9748–9770 (2012).

    Article  CAS  Google Scholar 

  17. Desmarchelier, A., Coeffard, V., Moreau, X. & Greck, C. Asymmetric organocatalytic functionalization of α,α-disubstituted aldehydes through enamine activation. Tetrahedron 70, 2491–2513 (2014).

    Article  CAS  Google Scholar 

  18. Trost, B. M. & Bartlett, M. J. ProPhenol-catalyzed asymmetric additions by spontaneously assembled dinuclear main group metal complexes. Acc. Chem. Res. 48, 688–701 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Y., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Simmons, B., Walji, A. M. & MacMillan, D. W. C. Cycle-specific organocascade catalysis: application to olefin hydroamination, hydro-oxidation, and amino-oxidation, and to natural product synthesis. Angew. Chem. Int. Ed. 48, 4349–4353 (2009).

    Article  CAS  Google Scholar 

  21. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Mase, N., Tanaka, F. & Barbas, C. F. III Synthesis of β-hydroxyaldehydes with stereogenic quaternary centers by direct organocatalytic asymmetric aldol reactions. Angew. Chem. Int. Ed. 43, 2420–2423 (2004).

    Article  CAS  Google Scholar 

  23. Chowdari, N. S., Suri, J. T. & Barbas, C. F. III Asymmetric synthesis of quaternary α- and β-amino acids and β-lactams via proline-catalyzed Mannich reactions with branched aldehyde donors. Org. Lett. 6, 2507–2510 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lalonde, M. P., Chen, Y. & Jacobsen, E. N. A chiral primary amine thiourea catalyst for the highly enantioselective direct conjugate addition of α,α-disubstituted aldehydes to nitroalkenes. Angew. Chem. Int. Ed. 45, 6366–6370 (2006).

    Article  CAS  Google Scholar 

  25. Mukherjee, S. & List, B. Chiral counteranions in asymmetric transition-metal catalysis: highly enantioselective Pd/Brønsted acid-catalyzed direct α-allylation of aldehydes. J. Am. Chem. Soc. 129, 11336–11337 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Brown, A. R., Kuo, W.-H. & Jacobsen, E. N. Enantioselective catalytic α-alkylation of aldehydes via an SN1 pathway. J. Am. Chem. Soc. 132, 9286–9288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang, G. & List, B. Direct asymmetric α-allylation of aldehydes with simple allylic alcohols enabled by the concerted action of three different catalysts. Angew. Chem. Int. Ed. 50, 9471–9474 (2011).

    Article  CAS  Google Scholar 

  28. List, B. et al. The catalytic asymmetric α-benzylation of aldehydes. Angew. Chem. Int. Ed. 53, 282–285 (2014).

    Article  CAS  Google Scholar 

  29. Trost, B. M., Saget, T., Lerchen, A. & Hung, C.-I. Catalytic asymmetric reactions with fluorinated aromatic ketones: efficient access to chiral β-fluoroamines. Angew. Chem. Int. Ed. 55, 781–784 (2016).

    Article  CAS  Google Scholar 

  30. Vesely, J. & Rios, R. Enantioselective methodologies using N-carbamoyl-imines. Chem. Soc. Rev. 43, 611–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, B., Balaji, P. V., Kumagai, N. & Shibasaki, M. α-Halo amides as competent latent enolates. Direct catalytic asymmetric Mannich-type reaction. J. Am. Chem. Soc. 139, 8295–8301 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Trost, B. M., Saget, T. & Hung, C.-I. Direct catalytic asymmetric Mannich reactions for the construction of quaternary carbon stereocenters. J. Am. Chem. Soc. 138, 3659–3662 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright, T. B. & Evans, P. A. Enatioselective rhodium-catalyzed allylic alkylation of prochiral α,α-disubstituted aldehyde enolates for the construction of acyclic quaternary stereogenic centers. J. Am. Chem. Soc. 138, 15303–15306 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Doyle, A. G. & Jacobsen, E. N. Enantioselective alkylation of acyclic α,α-disubstituted tributyltin enolates catalyzed by a {Cr(salen)} complex. Angew. Chem. Int. Ed. 46, 3701–3705 (2007).

    Article  CAS  Google Scholar 

  35. Trost, B. M. & Hung, C.-I. Broad spectrum enolate equivalent for catalytic chemo-, diastereo-, and enantioselective addition to N-Boc imines. J. Am. Chem. Soc. 137, 15940–15946 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi, S., Kanai, M. & Shibasaki, M. Asymmetric synthesis of dihydropyranones from ynones by sequential copper(I)-catalyzed direct aldol and silver (I)-catalyzed oxy-Michael reactions. Angew. Chem. Int. Ed. 51, 3932–3935 (2012).

    Article  CAS  Google Scholar 

  37. Silva, F., Sawicki, M. & Gouverneur, V. Enantioselective organocatalytic aldol reaction of ynones and its synthetic applications. Org. Lett. 8, 5417–5419 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Wermuth, C.G. The practice of medicinal chemistry. 3rd ed. (Elsevier/Academic Press, Amsterdam, Boston, 2008).

  39. Corey, E. J. & Cimprich, K. A. Highly enantioselective alkynylation of aldehydes promoted by chiral oxazaborolidines. J. Am. Chem. Soc. 116, 3151–3152 (1994).

    Article  CAS  Google Scholar 

  40. Frantz, D. E., Fässler, R. & Carreira, E. M. Facile enantioselective synthesis of propargylic alcohols by direct addition of terminal alkynes to aldehydes. J. Am. Chem. Soc. 122, 1806–1807 (2000).

    Article  CAS  Google Scholar 

  41. Gommermann, N., Koradin, C., Polborn, K. & Knochel, P. Enantioselective, copper(I)-catalyzed three component reaction for the preparation of propargylamines. Angew. Chem. Int. Ed. 42, 5763–5766 (2003).

    Article  CAS  Google Scholar 

  42. Takita, R., Yakura, K., Ohshima, T. & Shibasaki, M. Asymmetric alkynylation of aldehydes catalyzed by an In(III)/BINOL complex. J. Am. Chem. Soc. 127, 13760–13761 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Pu., L. Asymmetric functional organozinc additions to aldehydes catalyzed by 1,1′-Bi-2-naphthols. Acc. Chem. Res. 47, 1523–1535 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the National Science Foundation (CHE-1360634) and National Institutes of Health (GM033049) for generous support of our programmes. We thank S. Lynch (Stanford University) for conducting nuclear Overhauser effect experiments and A. Oliver (University of Notre Dame) for X-ray crystallographic analysis. T.S. is grateful to the Swiss National Science Foundation for a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.M.T., C.-I.H. and T.S. conceived and designed the project. B.M.T. supervised the project. C.-I.H., T.S. and E.G. performed the experiments. B.M.T., C.-I.H. and T.S. co-wrote the manuscript.

Corresponding author

Correspondence to Barry M. Trost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–70, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trost, B.M., Hung, CI.(., Saget, T. et al. Branched aldehydes as linchpins for the enantioselective and stereodivergent synthesis of 1,3-aminoalcohols featuring a quaternary stereocentre. Nat Catal 1, 523–530 (2018). https://doi.org/10.1038/s41929-018-0093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0093-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing