A photoswitchable catalyst system for remote-controlled (co)polymerization in situ

Abstract

The fundamental properties of a polymeric material are ultimately governed by its structure, which mainly relies on monomer composition and connection, topology, chain length, and polydispersity. Thus far, these structural characteristics are typically set ex situ by the specific polymerization procedure, eventually limiting the future design space for the creation of more sophisticated polymers. Herein, we report on a single photoswitchable catalyst system, which enables in situ remote control over the ring-opening polymerization of l-lactide and further allows regulation of the incorporation of trimethylene carbonate and δ-valerolactone monomers in copolymerizations. By implementing a phenol moiety into a diarylethene-type structure, we exploit light-induced keto–enol tautomerism to switch the hydrogen-bonding-mediated monomer activation reversibly ON and OFF. This general and versatile principle allows for exquisite external modulation of ground-state catalysis of a living polymerization process in a closed system by ultraviolet and visible light and should thereby facilitate the generation of new polymer structures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Photocontrol over l-lactide polymerization using diarylethene 1.
Fig. 2: Photoswitching performance of 1 and single-crystal X-ray structure of 1cK.
Fig. 3: In situ photoregulating the ROP of l-lactide using photoswitchable catalyst 1.
Fig. 4: Copolymerization experiments using photoswitchable catalyst 1 in a closed system.

References

  1. 1.

    Leibfarth, F. A., Mattson, K. M., Fors, B. P., Collins, H. A. & Hawker, C. J. External regulation of controlled polymerizations. Angew. Chem. Int. Ed. 52, 199–210 (2013).

    Article  CAS  Google Scholar 

  2. 2.

    Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kamber, N. E. et al. Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Kiesewetter, M. K., Shin, E. J., Hedrick, J. L. & Waymouth, R. M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43, 2093–2107 (2010).

    Article  CAS  Google Scholar 

  5. 5.

    Thomas, M. C. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 39, 165–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Thomas, C. & Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem. 16, 1687–1699 (2014).

    Article  CAS  Google Scholar 

  7. 7.

    Eisenreich, F., Viehmann, P., Müller, F. & Hecht, S. Electronic activity tuning of acyclic guanidines for lactide polymerization. Macromolecules 48, 8729–8732 (2015).

    Article  CAS  Google Scholar 

  8. 8.

    Zhang, X., Jones, G. O., Hedrick, J. L. & Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 8, 1047–1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Teator, A. J., Lastovickova, D. N. & Bielawski, C. W. Switchable polymerization catalysts. Chem. Rev. 116, 1969–1992 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Gregson, C. K. A. et al. Redox control within single-site polymerization catalysts. J. Am. Chem. Soc. 128, 7410–7411 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Wang, X. et al. Redox control of group 4 metal ring-opening polymerization activity toward l-lactide and ε-caprolactone. J. Am. Chem. Soc. 136, 11264–11267 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Quan, S. M., Wang, W., Zhang, R. & Diaconescu, P. L. Redox switchable copolymerization of cyclic esters and epoxides by a zirconium complex. Macromolecules 49, 6768–6778 (2016).

    Article  CAS  Google Scholar 

  13. 13.

    Biernesser, A. B., Li, B. & Byers, J. A. Redox-controlled polymerization of lactide catalyzed by bis(imino)pyridine iron bis(alkoxide) complexes. J. Am. Chem. Soc. 135, 16553–16560 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Biernesser, A. B., Delle Chiaie, K. R., Curley, J. B. & Byers, J. A. Redox copolymerization of lactide and an epoxide facilitated by a redox switchable iron-based catalyst. Angew. Chem. Int. Ed. 55, 5251–5254 (2016).

    Article  CAS  Google Scholar 

  15. 15.

    Delle Chiaie, K. R. et al. Redox-triggered crosslinking of a degradable polymer. Polym. Chem. 7, 4675–4681 (2016).

    Article  CAS  Google Scholar 

  16. 16.

    Zhu, Y., Romain, C. & Williams, C. K. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters. J. Am. Chem. Soc. 137, 12179–12182 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Romain, C. et al. Chemoselective polymerizations from mixtures of epoxide, lactone, anhydride, and carbon dioxide. J. Am. Chem. Soc. 138, 4120–4131 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Göstl, R., Senf, A. & Hecht, S. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution. Chem. Soc. Rev. 43, 1982–1996 2014).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Bratton, D., Yang, D., Dai, J. & Ober, C. K. Recent progress in high resolution lithography. Polym. Adv. Technol. 17, 94–103 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    Tumbleston, J. R. et al. Continuous liquid interface production of 3D objects. Science 347, 1349–1352 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Fors, B. P. & Hawker, C. J. Control of a living radical polymerization of methacrylates by light. Angew. Chem. Int. Ed. 51, 8850–8853 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    Kottisch, V., Michaudel, Q. & Fors, B. P. Cationic polymerization of vinyl ethers controlled by visible light. J. Am. Chem. Soc. 138, 15535–15538 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Stoll, R. S. & Hecht, S. Artificial light-gated catalyst systems. Angew. Chem. Int. Ed. 49, 5054–5075 (2010).

    Article  CAS  Google Scholar 

  24. 24.

    Neilson, B. M. & Bielawski, C. W. Illuminating photoswitchable catalysis. ACS Catal. 3, 1874–1885 (2013).

    Article  CAS  Google Scholar 

  25. 25.

    Vlatković, M, Collins, B. S. L. & Feringa, B. L. Dynamic responsive systems for catalytic function. Chem. Eur. J. 22, 17080–17111 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Blanco, V., Leigh, D. A. & Marcosa, V. Artificial switchable catalysts. Chem. Soc. Rev. 44, 5341–5370 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Würthner, F. & Rebek, J.Jr. Light-switchable catalysis in synthetic receptors. Angew. Chem. Int. Ed. 34, 446–448 (1995).

    Article  Google Scholar 

  28. 28.

    Cacciapaglia, R., Di Stefano, S. & Mandolini, L. The bis–barium complex of a butterfly crown ether as a phototunable supramolecular catalyst. J. Am. Chem. Soc. 125, 2224–2227 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Sud, D., Norsten, T. B. & Branda, N. R. Photoswitching of stereoselectivity in catalysis using a copper dithienylethene complex. Angew. Chem. Int. Ed. 44, 2019–2021 (2005).

    Article  CAS  Google Scholar 

  30. 30.

    Stoll, R. S. et al. Photoswitchable catalysts: correlating structure and conformational dynamics with reactivity by a combined experimental and computational approach. J. Am. Chem. Soc. 131, 357–367 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Wei, Y., Han, S., Kim, J., Soh, S. & Grzybowski, B. A. Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. J. Am. Chem. Soc. 132, 11018–11020 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Berryman, O. B., Sather, A. C., Lledó, A. & Rebek, J. Switchable catalysis with a light-responsive cavitand. Angew. Chem. Int. Ed. 50, 9400–9403 (2011).

    Article  CAS  Google Scholar 

  34. 34.

    Wilson, D. & Branda, N. R. Turning “on” and “off” a pyridoxal 5′-phosphate mimic using light. Angew. Chem. Int. Ed. 51, 5431–5434 (2012).

    Article  CAS  Google Scholar 

  35. 35.

    Imahori, T., Yamaguchi, R. & Kurihara, S. Azobenzene-tethered bis(trityl alcohol) as a photoswitchable cooperative acid catalyst for Morita–Baylis–Hillman reactions. Chem. Eur. J. 18, 10802–10807 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Osorio-Planes, L., Rodríguez-Escrich, C. & Pericàs, M. A. Photoswitchable thioureas for the external manipulation of catalytic activity. Org. Lett. 16, 1704–1707 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Zhao, D., Neubauer, T. M. & Feringa, B. L. Dynamic control of chirality in phosphine ligands for enantioselective catalysis. Nat. Commun. 6, 6652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  39. 39.

    Neri, S., Garcia Martin, S., Pezzato, C. & Prins, L. J. Photoswitchable catalysis by a nanozyme mediated by a light-sensitive cofactor. J. Am. Chem. Soc. 139, 1794–1797 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Neilson, B. M. & Bielawski, C. W. Photoswitchable NHC-promoted ring-opening polymerizations. Chem. Commun. 49, 5453–5455 (2013).

    Article  CAS  Google Scholar 

  41. 41.

    Fu, C., Xu, J. & Boyer, C. Photoacid-mediated ring opening polymerization driven by visible light. Chem. Commun. 52, 7126–7129 (2016).

    Article  CAS  Google Scholar 

  42. 42.

    Dai, Z., Cui, Y., Chen, C. & Wu, J. Photoswitchable ring-opening polymerization of lactide catalyzed by azobenzene-based thiourea. Chem. Commun. 52, 8826–8829 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    Teator, A. J., Shao, H., Lu, G., Liu, P. & Bielawski, C. W. A photoswitchable olefin metathesis catalyst. Organometallics 36, 490–497 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    Thomas, C. et al. Phenols and tertiary amines: an amazingly simple hydrogen-bonding organocatalytic system promoting ring opening polymerization. Adv. Synth. Catal. 353, 1049–1054 (2011).

    Article  CAS  Google Scholar 

  45. 45.

    Yamaguchi, T. et al. Photochromic reaction of diarylethenes having phenol moiety as an aryl ring. Bull. Chem. Soc. Jpn 87, 528–538 (2014).

    Article  CAS  Google Scholar 

  46. 46.

    Kawai, S. H., Gilat, S. L. & Lehn, J.-M. Photochemical pKa-modulation and gated photochromic properties of a novel diarylethene switch. Eur. J. Org. Chem. 1999, 2359–2366 (1999).

    Article  Google Scholar 

  47. 47.

    Herder, M. et al. Improving the fatigue resistance of diarylethene switches. J. Am. Chem. Soc. 137, 2738–2747 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Herder, M. et al. Light-controlled reversible modulation of frontier molecular orbital energy levels in trifluoromethylated diarylethenes. Chem. Eur. J. 23, 3743–3754 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Pratt, R. C. et al. Exploration, optimization, and application of supramolecular thiourea−amine catalysts for the synthesis of lactide (co)polymers. Macromolecules 39, 7863–7871 (2006).

    Article  CAS  Google Scholar 

  50. 50.

    Todd, R., Rubio, G., Hall, D. J., Tempelaar, S. & Dove, A. P. Benzyl bispidine as an efficient replacement for (–)-sparteine in ring opening polymerisation. Chem. Sci. 4, 1092–1097 (2013).

    Article  CAS  Google Scholar 

  51. 51.

    Kowalski, A., Libiszowski, J., Duda, A. & Penczek, S. Polymerization of l,l-dilactide initiated by tin(II) butoxide. Macromolecules 33, 1964–1971 (2000).

    Article  CAS  Google Scholar 

  52. 52.

    Corrigan, N., Shanmugam, S., Xu, J. & Boyer, C. Photocatalysis in organic and polymer synthesis. Chem. Soc. Rev. 45, 6165–6212 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Palard, I., Schappacher, M., Belloncle, B., Soum, A. & Guillaume, S. Unprecedented polymerization of trimethylene carbonate initiated by a samarium borohydride complex: mechanistic insights and copolymerization with ε-caprolactone. Chem. Eur. J. 13, 1511–1521 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Save, M., Schappacher, M. & Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. General aspects and kinetics. Macromol. Chem. Phys. 203, 889–899 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.E. and M.K. are indebted to the Fonds der Chemischen Industrie and Studienstiftung des deutschen Volkes, respectively, for providing doctoral fellowships. Generous support from the European Research Council via ERC-2012-STG_308117 (Light4Function) is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

F.E., M.K. and S.P.I. synthesized diarylethene 1. F.E. conducted ultraviolet visible spectroscopy and polymerization experiments, and analysed polymers via NMR and GPC measurements. F.E. and A.D. performed kinetics studies of polymerizations via NMR spectroscopy. T.S. conducted MALDI-MS measurements. B.M.S. solved the single-crystal X-ray structure. F.E., M.K. and S.H. conceived the idea, designed the study and wrote the manuscript. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Stefan Hecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–48, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eisenreich, F., Kathan, M., Dallmann, A. et al. A photoswitchable catalyst system for remote-controlled (co)polymerization in situ. Nat Catal 1, 516–522 (2018). https://doi.org/10.1038/s41929-018-0091-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing