Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution

Abstract

Engineering material structures at the atomic level is a promising way to tune the physicochemical properties of materials and optimize their performance in various potential applications. Here, we show that the lithiation-induced amorphization of layered crystalline Pd3P2S8 activates this otherwise electrochemically inert material as a highly efficient hydrogen evolution catalyst. Electrochemical lithiation of the layered Pd3P2S8 crystal results in the formation of amorphous lithium-incorporated palladium phosphosulfide nanodots with abundant vacancies. The structure change during the lithiation-induced amorphization process is investigated in detail. The amorphous lithium-incorporated palladium phosphosulfide nanodots exhibit excellent electrocatalytic activity towards the hydrogen evolution reaction with an onset potential of −52 mV, a Tafel slope of 29 mV dec−1 and outstanding long-term stability. Experimental and theoretical investigations reveal that the tuning of morphology and structure of Pd3P2S8 (for example, dimension decrease, crystallinity loss, vacancy formation and lithium incorporation) contribute to the activation of its intrinsically inert electrocatalytic property. This work provides a unique way for structure tuning of a material to effectively manipulate its catalytic properties and functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of layered Pd3P2S8 and the result of its electrochemical lithiation.
Fig. 2: Analysis of structural changes induced by the electrochemical lithiation process.
Fig. 3: Electrocatalytic activity of Li-PPS NDs in the HER.
Fig. 4: Stability test of Li-PPS NDs in the HER.

Similar content being viewed by others

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 146 (2017).

    Article  Google Scholar 

  2. Wang, H., Yuan, H., Sae Hong, S., Li, Y. & Cui, Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem. Soc. Rev. 44, 2664–2680 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Yu, Y. et al. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 14, 553–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Seo, B. et al. Monolayer-precision synthesis of molybdenum sulfide nanoparticles and their nanoscale size effects in the hydrogen evolution reaction. ACS Nano. 9, 3728–3739 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Xie, J. et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013).

    Article  CAS  Google Scholar 

  8. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Gong, Q. et al. Ultrathin MoS2(1–x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal. 5, 2213–2219 (2015).

    Article  CAS  Google Scholar 

  10. Chia, X., Eng, A. Y. S., Ambrosi, A., Tan, S. M. & Pumera, M. Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem. Rev. 115, 11941–11966 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Bither, T. A., Donohue, P. C. & Young, H. S. Palladium and platinum phosphochalcogenides—synthesis and properties. J. Solid State Chem. 3, 300–307 (1971).

    Article  CAS  Google Scholar 

  12. Folmer, J. C. W., Turner, J. A. & Parkinson, B. A. Photoelectrochemical characterization of several semiconducting compounds of palladium with sulfur and/or phosphorus. J. Solid State Chem. 68, 28–37 (1987).

    Article  CAS  Google Scholar 

  13. Grasso, V. & Silipigni, L. X-ray photoemission spectra and X-ray excited Auger spectrum investigation of the electronic structure of Pd3(PS4)2. J. Vac. Sci. Techno. A 21, 860–865 (2003).

    Article  CAS  Google Scholar 

  14. Calareso, C., Grasso, V. & Silipigni, L. Vibrational and low-energy optical spectra of the square-planar Pd3(PS4)2 thiophosphate. Phys. Rev. B 60, 2333–2339 (1999).

    Article  CAS  Google Scholar 

  15. Gronvold, F. & Rost, E. The crystal structure of PdSe2 and PdS2. Acta Crystallogr. 10, 329–331 (1957).

    Article  CAS  Google Scholar 

  16. Gave, M. A., Bilc, D., Mahanti, S. D., Breshears, J. D. & Kanatzidis, M. G. On the lamellar compounds CuBiP2Se6, AgBiP2Se6 and AgBiP2S6. Antiferroelectric phase transitions due to cooperative Cu+ and Bi3+ ion motion. Inorg. Chem. 44, 5293–5303 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    Article  CAS  Google Scholar 

  18. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano. 6, 7311–7317 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X. et al. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem. Int. Ed. 54, 5425–5428 (2015).

    Article  CAS  Google Scholar 

  20. Boscherini, F. in Synchrotron Radiation: Basics, Methods and Applications (eds Mobilio, S., Boscherini, F. & Meneghini, C.) 485–498 (Springer, Berlin & Heidelberg, 2015).

  21. Sun, Z., Liu, Q., Yao, T., Yan, W. & Wei, S. X-ray absorption fine structure spectroscopy in nanomaterials. Sci. China Mater. 58, 313–341 (2015).

    Article  CAS  Google Scholar 

  22. Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Du, Y. et al. XAFCA: a new XAFS beamline for catalysis research. J. Synchrotron Radiat. 22, 839–843 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (ed. Chastain, J.) (Perkin–Elmer Corporation, Eden Prairie, 1992).

  25. Zubavichus, Y. et al. XAFS study of MoS2 intercalation compounds. J. Phys. Colloq. 7, C3-1057–C3-1059 (1997).

    Google Scholar 

  26. Yin, Y. et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Pentland, N., Bockris, J. O. M. & Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 104, 182–194 (1957).

    Article  CAS  Google Scholar 

  28. Conway, B. E. & Bockris, J. O. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J. Chem. Phys. 26, 532–541 (1957).

    Article  CAS  Google Scholar 

  29. Shinagawa, T., Garcia-Esparza, A. T. & Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 5, 13801 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

    Article  CAS  Google Scholar 

  31. Gao, M.-R., Chan, M. K. Y. & Sun, Y. Edge-terminated molybdenum disulfide with a 9.4-A interlayer spacing for electrochemical hydrogen production. Nat. Commun. 6, 7493 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Green, C. L. & Kucernak, A. Determination of the platinum and ruthenium surface areas in platinum−ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J. Phys. Chem. B 106, 1036–1047 (2002).

    Article  CAS  Google Scholar 

  33. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, H.-S. et al. The XAFS beamline of SSRF. Nucl. Sci. Tech. 26, 050102 (2015)

  37. Du, Y. et al. Data analysis method to achieve sub-10 pm spatial resolution using extended X-ray absorption fine-structure spectroscopy. J. Synchrotron Radiat. 21, 756–761 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Watt, F. et al. The National University of Singapore high energy ion nano-probe facility: performance tests. Nucl. Instr. Meth. Phys. Res. B 210, 14–20 (2003).

    Article  CAS  Google Scholar 

  39. Tesmer, J, R. & Nastasi, M. A. Handbook of Modern Ion Beam Materials Analysis (Materials Research Society, Pittsburgh, 1995).

  40. Mayer, M. SIMNRA User’s Guide IPP 9/113 (Max-Planck-Institut für Plasmaphysik, Garching, 1997).

  41. Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, Boston, 1998).

  42. Yang, X. et al. CoP nanosheet assembly grown on carbon cloth: a highly efficient electrocatalyst for hydrogen generation. Nano Energy 15, 634–641 (2015).

    Article  CAS  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  44. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Monkhorst, H. J. & Pack, J. D.Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  49. Ankudinov, A. L., Ravel, B., Rehr, J. J., & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MOE under Academic Research Fund Tier 2 (ARC 19/15; numbers MOE2014-T2-2-093, MOE2015-T2-2-057, MOE2016-T2-2-103 and MOE2017-T2-1-162) and Academic Research Fund Tier 1 (2016-T1-001-147, 2016-T1-002-051, 2017-T1-001-150 and 2017-T1-002-119), and NTU under Start-Up Grant M4081296.070.500000 in Singapore. X.W. acknowledges funding support from the NSFC (21421063 and 21573204) and MOST (2016YFA0200602) of China. P. W. would like to acknowledge funding support from the NSFC (11474147) of China. The authors acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore for use of electron microscopy (and/or X-ray) facilities.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. proposed the research direction and guided the project. X.Z. designed and performed the experiments. Z.Luo carried out the electrochemical experiments. P.Y. and Z.Liu grew the Pd3P2S8 crystal. Y.Cai, D.W. and X.W. performed the theoretical work. Y.D., Z.J., J.L. and A.B. performed the XAS characterization, and Y.D., S.C. and L.S. assisted in the data fitting and analysis. S.G and P.W. carried out the NBED measurement. Z.Li conducted the XPS measurement. Y.H. performed the AFM characterization. C.Y.A. and Y.Z. conducted the single-crystal diffraction characterization. M.R. and T.O. performed the NRA characterization. C.T., J.Y. and Y.Chen performed supporting experiments. X.Z. and H.Z. analysed and discussed all experimental results and drafted the manuscript. All authors checked the manuscript and agreed with the content.

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisherʼs note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–34, Supplementary Tables 1–10, Supplementary Notes 1–14, Supplementary References

Crystallographic data

Crystallographic data for Pd3P2S8, CCDC reference 1832692

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Luo, Z., Yu, P. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat Catal 1, 460–468 (2018). https://doi.org/10.1038/s41929-018-0072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0072-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing