Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis


Correlations between the energies of elementary steps limit the rates of thermally catalysed reactions at surfaces. Here, we show how these limitations can be circumvented in ammonia synthesis by coupling catalysts to a non-thermal plasma. We postulate that plasma-induced vibrational excitations in N2 decrease dissociation barriers without influencing subsequent reaction steps. We develop a density-functional-theory-based microkinetic model to incorporate this effect, and parameterize the model using N2 vibrational excitations observed in a dielectric-barrier-discharge plasma. We predict plasma enhancement to be particularly great on metals that bind nitrogen too weakly to be active thermally. Ammonia synthesis rates observed in a dielectric-barrier-discharge plasma reactor are consistent with predicted enhancements and predicted changes in the optimal metal catalyst. The results provide guidance for optimizing catalysts for application with plasmas.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Modelled ammonia synthesis rates during thermal catalysis.
Fig. 2: Relationships between the N2 vibrational state and effective dissociation barrier.
Fig. 3: Plasma-induced vibrational excitation of N2.
Fig. 4: Rate enhancements with plasma-induced N2 vibrational excitation.
Fig. 5: Experimental plasma-catalytic kinetics.


  1. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  Article  Google Scholar 

  2. Evans, M. G. & Polanyi, M. Inertia and driving force of chemical reactions. Trans. Faraday Soc. 34, 11–24 (1938).

    CAS  Article  Google Scholar 

  3. Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    CAS  Article  Google Scholar 

  4. Vojvodic, A. & Norskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–149 (2015).

    Article  Google Scholar 

  5. Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Annu. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Article  Google Scholar 

  6. Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Article  Google Scholar 

  7. Logadottir, A. et al. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197, 229–231 (2001).

    CAS  Article  Google Scholar 

  8. Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    CAS  Article  Google Scholar 

  9. Nørskov, J., Chen, J., Miranda, R., Fitzsimmons, T. & Stack, R. Sustainable Ammonia Synthesis—Exploring the Scientific Challenges Associated with Discovering Alternative, Sustainable Processes for Ammonia Production (US Department of Energy Office of Science, 2016).

  10. Bai, M., Zhang, Z., Bai, X., Bai, M. & Ning, W. Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans. Plasma Sci. 31, 1285–1291 (2003).

    CAS  Article  Google Scholar 

  11. Mizushima, T., Matsumoto, K., Sugoh, J., Ohkita, H. & Kakuta, N. Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl. Catal. A 265, 53–59 (2004).

    CAS  Article  Google Scholar 

  12. Mizushima, T., Matsumoto, K., Ohkita, H. & Kakuta, N. Catalytic effects of metal-loaded membrane-like alumina tubes on ammonia synthesis in atmospheric pressure plasma by dielectric barrier discharge. Plasma Chem. Plasma Process. 27, 1–11 (2006).

    Article  Google Scholar 

  13. Gómez-Ramírez, A., Cotrino, J., Lambert, R. M. & González-Elipe, A. R. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor. Plasma Sources Sci. Technol. 24, 065011 (2015).

    Article  Google Scholar 

  14. Kim, H.-H., Teramoto, Y., Ogata, A., Takagi, H. & Nanba, T. Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Process. Polym. 14, 1600157 (2016).

    Article  Google Scholar 

  15. Peng, P. et al. Atmospheric pressure ammonia synthesis using non-thermal plasma assisted catalysis. Plasma Chem. Plasma Process. 36, 1201–1210 (2016).

    CAS  Article  Google Scholar 

  16. Xie, D. et al. Ammonia synthesis and by-product formation from H2O, H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst. RSC Adv. 6, 105338–105346 (2016).

    CAS  Article  Google Scholar 

  17. Hong, J. et al. Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric-pressure non-equilibrium discharge. Plasma Chem. Plasma Process. 36, 917–940 (2016).

    CAS  Article  Google Scholar 

  18. Akay, G. & Zhang, K. Process intensification in ammonia synthesis using novel coassembled supported microporous catalysts promoted by nonthermal plasma. Ind. Eng. Chem. Res. 56, 457–468 (2017).

    CAS  Article  Google Scholar 

  19. Iwamoto, M., Akiyama, M., Aihara, K. & Deguchi, T. Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catal. 7, 6924–6929 (2017).

    CAS  Article  Google Scholar 

  20. Akay, G. Ammonia production by integrated intensified processes. US Patent 20130309161A1 (2011).

  21. Fridman, A. Plasma Chemistry. (Cambridge Univ. Press, New York, NY, 2008).

    Book  Google Scholar 

  22. Rettner, C. T. & Stein, H. Effect of vibrational energy on the dissociative chemisorption of N2 on Fe(111). J. Chem. Phys. 87, 770–771 (1987).

    CAS  Article  Google Scholar 

  23. Holmblad, P. M., Wambach, J. & Chorkendorff, I. Molecular beam study of dissociative sticking of methane on Ni(100). J. Chem. Phys. 102, 8255–8263 (1995).

    CAS  Article  Google Scholar 

  24. Romm, L., Katz, G., Kosloff, R. & Asscher, M. Dissociative chemisorption of N2 on Ru(001) enhanced by vibrational and kinetic energy: molecular beam experiments and quantum mechanical calculations. J. Phys. Chem. B 101, 2213–2217 (1997).

    CAS  Article  Google Scholar 

  25. Murphy, M. J., Skelly, J. F., Hodgson, A. & Hammer, B. Inverted vibrational distributions from N2 recombination at Ru(001): evidence for a metastable molecular chemisorption well. J. Chem. Phys. 110, 6954–6962 (1999).

    CAS  Article  Google Scholar 

  26. Luntz, A. C. A simple model for associative desorption and dissociative chemisorption. J. Chem. Phys. 113, 6901–6905 (2000).

    CAS  Article  Google Scholar 

  27. Diekhöner, L. et al. N2 dissociative adsorption on Ru(0001): the role of energy loss. J. Chem. Phys. 115, 9028–9035 (2001).

    Article  Google Scholar 

  28. Smith, R. R. Preference for vibrational over translational energy in a gas-surface reaction. Science 304, 992–995 (2004).

    CAS  Article  Google Scholar 

  29. Ertl, G. in Elementary Steps in Ammonia Synthesis 109–132 (Springer, Boston, MA, 1991).

  30. Honkala, K. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    CAS  Article  Google Scholar 

  31. Wang, S. et al. Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys. Chem. Chem. Phys. 13, 20760 (2011).

    CAS  Article  Google Scholar 

  32. Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. CatApp: a web application for surface chemistry and heterogeneous catalysis. Angew. Chem. Int. Ed. 124, 278–280 (2011).

    Article  Google Scholar 

  33. Falsig, H. et al. On the structure sensitivity of direct no decomposition over low-index transition metal facets. Top. Catal. 57, 80–88 (2013).

    Article  Google Scholar 

  34. Grabow, L. C. in Computational Catalysis 1–58 (Royal Society of Chemistry, Cambridge, 2013).

  35. Hansen, F. Y., Henriksen, N. E., Billing, G. D. & Guldberg, A. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules: theoretical calculation of equilibrium and rate constants. Surf. Sci. 264, 225–234 (1992).

    CAS  Article  Google Scholar 

  36. Polanyi, J. C. Concepts in reaction dynamics. Acc. Chem. Res. 5, 161–168 (1972).

    CAS  Article  Google Scholar 

  37. Díaz, C. & Olsen, R. A. A note on the vibrational efficacy in molecule-surface reactions. J. Chem. Phys. 130, 094706 (2009).

    Article  Google Scholar 

  38. Cacciatore, M., Capitelli, M., De Benedictis, S., Dilonardo, M. & Gorse, C. in Nonequilibrium Vibrational Kinetics 5–46 (Springer, Berlin and Heidelberg, 1986).

  39. Laux, C. O., Spence, T. G., Kruger, C. H. & Zare, R. N. Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Sci. Technol. 12, 125–138 (2003).

    CAS  Article  Google Scholar 

  40. Treanor, C. E., Rich, J. W. & Rehm, R. G. Vibrational relaxation of anharmonic oscillators with exchange-dominated collisions. J. Chem. Phys. 48, 1798–1807 (1968).

    CAS  Article  Google Scholar 

  41. Gordiets, B. F. & Zhdanok, S. in Nonequilibrium Vibrational Kinetics 47–84 (Springer, Berlin and Heidelberg, 1986).

  42. Kim, J., Go, D. B. & Hicks, J. C. Synergistic effects of plasma–catalyst interactions for CH4 activation. Phys. Chem. Chem. Phys. 19, 13010–13021 (2017).

    CAS  Article  Google Scholar 

  43. Kim, J., Abbott, M. S., Go, D. B. & Hicks, J. C. Enhancing C–H bond activation of methane via temperature-controlled, catalyst-plasma interactions. ACS Energy Lett. 1, 94–99 (2016).

    CAS  Article  Google Scholar 

  44. Neyts, E. C., Ostrikov, K. K., Sunkara, M. K. & Bogaerts, A. Plasma catalysis: synergistic effects at the nanoscale. Chem. Rev. 115, 13408–13446 (2015).

    CAS  Article  Google Scholar 

  45. Snoeckx, R. & Bogaerts, A. Plasma technology—a novel solution for CO2 conversion? Chem. Soc. Rev. 46, 5805–5863 (2017).

    CAS  Article  Google Scholar 

  46. Wang, W., Patil, B., Heijkers, S., Hessel, V. & Bogaerts, A. Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. ChemSusChem 10, 2145–2157 (2017).

    CAS  Article  Google Scholar 

  47. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  48. Johnson III, R. D. NIST 101. Computational Chemistry Comparison and Benchmark Database (National Institute of Standards and Technology, 1999).

  49. Lausche, A. C. et al. On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. J. Catal. 307, 275–282 (2013).

    CAS  Article  Google Scholar 

  50. Frey, K., Schmidt, D. J., Wolverton, C. & Schneider, W. F. Implications of coverage-dependent O adsorption for catalytic NO oxidation on the late transition metals. Catal. Sci. Technol. 4, 4356–4365 (2014).

    CAS  Article  Google Scholar 

  51. Heijkers, S. et al. CO2 conversion in a microwave plasma reactor in the presence of N2: elucidating the role of vibrational levels. J. Phys. Chem. C 119, 12815–12828 (2015).

    CAS  Article  Google Scholar 

  52. Li, S., Ma, C., Zhang, Q., Ren, C. & Lu, W. Ion nitriding of pure iron using high-density plasma beam generated by a tubular plasma source. Surf. Coat. Technol. 309, 47–53 (2017).

    CAS  Article  Google Scholar 

  53. Staack, D., Farouk, B., Gutsol, A. & Fridman, A. Characterization of a DC atmospheric pressure normal glow discharge. Plasma Sources Sci. Technol. 14, 700–711 (2005).

    CAS  Article  Google Scholar 

  54. Staack, D., Farouk, B., Gutsol, A. F. & Fridman, A. A. Spectroscopic studies and rotational and vibrational temperature measurements of atmospheric pressure normal glow plasma discharges in air. Plasma Sources Sci. Technol. 15, 818–827 (2006).

    CAS  Article  Google Scholar 

  55. Laux, C. in Physico-Chemical Modeling of High Enthalpy and Plasma Flows 1–55 (von Karman Institute Lecture Series 2002-07, Rhode-Saint-Genèse, 2002).

  56. Hummelt, J. S., Shapiro, M. A. & Temkin, R. J. Spectroscopic temperature measurements of air breakdown plasma using a 110 GHz megawatt gyrotron beam. Phys. Plasmas 19, 123509 (2012).

    Article  Google Scholar 

Download references


This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Sustainable Ammonia Synthesis Program, under award number DE-SC-0016543. W.F.S. acknowledges additional support under award number DE-FG02-06ER15839. Computational resources were provided by the Notre Dame Center for Research Computing. We thank the Notre Dame Energy Materials Characterization Facility and Notre Dame Integrated Imaging Facility for use of the X-ray diffractometer and transmission electron microscope, respectively. P.M. acknowledges support through the Eilers Graduate Fellowship for Energy Related Research.

Author information

Authors and Affiliations



P.M. developed the microkinetic model. P.B. and J.K. performed the ammonia synthesis rate experiments. F.A.H. and P.R. performed the plasma characterization. P.M., P.B., F.A.H., D.B.G, J.C.H. and W.F.S. co-wrote the manuscript.

Corresponding authors

Correspondence to David B. Go, Jason C. Hicks or William F. Schneider.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–11, Supplementary Table 1 and Supplementary References.

Supplementary Data

Python source code.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehta, P., Barboun, P., Herrera, F.A. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat Catal 1, 269–275 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing