Single-atom catalysts have attracted great attention in recent years due to their high efficiencies and cost savings. However, there is debate concerning the nature of the active site, interaction with the support, and mechanism by which single-atom catalysts operate. Here, using a combined surface science and theory approach, we designed a model system in which we unambiguously show that individual Pt atoms on a well-defined Cu2O film are able to perform CO oxidation at low temperatures. Isotopic labelling studies reveal that oxygen is supplied by the support. Density functional theory rationalizes the reaction mechanism and confirms X-ray photoelectron spectroscopy measurements of the neutral charge state of Pt. Scanning tunnelling microscopy enables visualization of the active site as the reaction progresses, and infrared measurements of the CO stretch frequency are consistent with atomically dispersed Pt atoms. These results serve as a benchmark for characterizing, understanding and designing other single-atom catalysts.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Thomas, J. M. The concept, reality and utility of single-site heterogeneous catalysts (SSHCs). Phys. Chem. Chem. Phys. 16, 7647–7661 (2014).

  2. 2.

    Liu, J. Catalysis by supported metal single atoms. ACS Catal. 7, 34–59 (2017).

  3. 3.

    Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

  4. 4.

    Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

  5. 5.

    Yang, M. et al. Catalytically active Au–O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

  6. 6.

    Yang, M. et al A common single-site Pt(II)–O(OH)x—species stabilized by sodium on ‘active’ and ‘inert’ supports catalyzes the water–gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

  7. 7.

    Zhai, Y. et al. Alkali-stabilized Pt–OHx species catalyze low-temperature water–gas shift reactions. Science 329, 1633–1636 (2010).

  8. 8.

    Hutchings, G. J. et al. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. J. Catal. 242, 71–81 (2006).

  9. 9.

    Liu, S. et al. Stabilizing single-atom and small-domain platinum via combining organometallic chemisorption and atomic layer deposition. Organometallics 36, 818–828 (2017).

  10. 10.

    Ding, K. et al. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

  11. 11.

    Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

  12. 12.

    Ulrich, S. et al. Evidence for a size-selective adsorption mechanism on oxide surfaces: Pd and Au atoms on SiO2/Mo(112). ChemPhysChem 9, 1367–1370 (2008).

  13. 13.

    Bliem, R. et al. Cluster nucleation and growth from a highly supersaturated adatom phase: silver on magnetite. ACS Nano 8, 7531–7537 (2014).

  14. 14.

    Giordano, L. et al. Charging of metal adatoms on ultrathin oxide films: Au and Pd on FeO/Pt(111). Phys. Rev. Lett. 101, 26102 (2008).

  15. 15.

    Novotný, Z. et al. Ordered array of single adatoms with remarkable thermal stability: Au/Fe3O4(001). Phys. Rev. Lett. 108, 216103 (2012).

  16. 16.

    Skomski, D., Tempas, C. D., Smith, K. A. & Tait, S. L. Redox-active on-surface assembly of metal−organic chains with single-site Pt(II). J. Am. Chem. Soc. 136, 9862–9865 (2014).

  17. 17.

    Skomski, D. et al. Two- and three-electron oxidation of single-site vanadium centers at surfaces by ligand design. J. Am. Chem. Soc. 137, 7898–7902 (2015).

  18. 18.

    Rim, K. T. et al. Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: a scanning tunneling microscopy/spectroscopy study. J. Phys. Chem. C 113, 10198–10205 (2009).

  19. 19.

    Yang, B., Lin, X., Gao, H.-J., Nilius, N. & Freund, H.-J. CO adsorption on thin MgO films and single Au adatoms: a scanning tunneling microscopy study. J. Phys. Chem. C 114, 8997–9001 (2010).

  20. 20.

    Parkinson, G. S. et al. Carbon monoxide-induced adatom sintering in a Pd–Fe3O4 model catalyst. Nat. Mater. 12, 724–728 (2013).

  21. 21.

    Bliem, R. et al. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface. Proc. Natl Acad. Sci. USA 113, 8921–8926 (2016).

  22. 22.

    Zhou, X. et al. Stable Pt single atoms and nanoclusters on ultrathin CuO film and their performances in CO oxidation. J. Phys. Chem. C 120, 1709–1715 (2016).

  23. 23.

    Bliem, R. et al. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem. Int. Ed. Engl. 54, 13999–14002 (2015).

  24. 24.

    Therrien, A. J. et al. Structurally accurate model for the ‘29’-structure of CuxO/Cu(111): a DFT and STM study. J. Phys. Chem. C 120, 10879–10886 (2016).

  25. 25.

    Hensley, A. J. R. et al. CO adsorption on the ‘29’ CuxO/Cu(111) surface: an integrated DFT, STM and TPD study. J. Phys. Chem. C 120, 25387–25394 (2016).

  26. 26.

    Mukerji, R. J., Bolina, A. S. & Brown, W. A. A RAIRS and TPD investigation of the adsorption of CO on Pt{211}. Surf. Sci. 527, 198–208 (2003).

  27. 27.

    Hayden, B. E. & Bradshaw, A. M. The adsorption of CO on Pt(111) studied by infrared-reflection-adsorption spectroscopy. Surf. Sci. 125, 787–802 (1983).

  28. 28.

    Orita, H. & Inada, Y. DFT investigation of CO adsorption on Pt(211) and Pt (311) surfaces from low to high coverage. J. Phys. Chem. B 109, 22469–22475 (2005).

  29. 29.

    Lundwall, M. J., Mcclure, S. M. & Goodman, D. W. Probing terrace and step sites on Pt nanoparticles using CO and ethylene. J. Phys. Chem. C 114, 7904–7912 (2010).

  30. 30.

    Hoffman, A. S., Fang, C.-Y. & Gates, B. C. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7, 3854–3860 (2016).

  31. 31.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

  32. 32.

    Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

  33. 33.

    Lee, H. & Ho, W. Structural determination by single-molecule vibrational spectroscopy and microscopy: contrast between copper and iron carbonyls. Phys. Rev. B 61, R16347–R16350 (2000).

  34. 34.

    Chen, S. et al. Probing surface structures of CeO2, TiO2, and Cu2O nanocrystals with CO and CO2 chemisorption. J. Phys. Chem. C 120, 21472–21485 (2016).

  35. 35.

    Baber, A. E. et al. Stabilization of catalytically active Cu+ surface sites on titanium-copper mixed-oxide films. Angew. Chem. Int. Ed. Engl. 126, 5440–5444 (2014).

  36. 36.

    Baber, A. E. et al. In situ imaging of Cu2O under reducing conditions: formation of metallic fronts by mass transfer. J. Am. Chem. Soc. 135, 16781–16784 (2013).

  37. 37.

    Gerrard, A. L. & Weaver, J. F. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111). J. Chem. Phys. 123, 224703 (2005).

  38. 38.

    Heiz, U., Sanchez, A., Abbet, S. & Schneider, W.-D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).

  39. 39.

    Xu, J. & Yates, J. T. Catalytic oxidation of CO on Pt(335): a study of the active site. J. Chem. Phys. 99, 725–732 (1993).

  40. 40.

    Campbell, C. T., Ertl, G., Kuipers, H. & Segner, J. A molecular beam investigation of the interactions of CO with a Pt(111) surface. Surf. Sci. 107, 207–219 (1981).

  41. 41.

    Liu, J. et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 138, 6396–6399 (2016).

  42. 42.

    National Archives and Records Administration Greenhouse gas emissions and fuel efficiency standards for medium- and heavy-duty engines and vehicles—phase 2. Fed. Regist. 81, 73478–74274 (2016)..

  43. 43.

    Doornkamp, C. & Ponec, V. The universal character of the Mars and Van Krevelen mechanism. J. Mol. Catal. A Chem. 162, 19–32 (2000).

  44. 44.

    Redhead, P. A. Thermal desorption of gases. Vacuum 12, 203–211 (1962).

  45. 45.

    King, D. A. Thermal desorption from metal surfaces: a review. Surf. Sci. 47, 384–402 (1975).

  46. 46.

    Koslowski, B., Dietrich, C., Tschetschetkin, A. & Ziemann, P. Evaluation of scanning tunneling spectroscopy data: approaching a quantitative determination of the electronic density of states. Phys. Rev. B 75, 35421 (2007).

  47. 47.

    Lang, N. D. Spectroscopy of single atoms in the scanning tunneling microscope. Phys. Rev. B 34, 5947–5950 (1986).

  48. 48.

    Giordano, L. & Pacchioni, G. Oxide film at the nanoscale: new structures, new functions, and new materials. Acc. Chem. Res. 44, 1244–1252 (2011).

  49. 49.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

  50. 50.

    Lang, R. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. Engl. 55, 16054–16058 (2016).

  51. 51.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

  52. 52.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  53. 53.

    Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  54. 54.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

  55. 55.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  56. 56.

    Pack, J. D. & Monkhorst, H. J. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

  57. 57.

    Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

  58. 58.

    Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).

  59. 59.

    Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010–7022 (1999).

  60. 60.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

  61. 61.

    Trygubenko, S. A. & Wales, D. J. A doubly nudged elastic band method for finding transition states. J. Chem. Phys. 120, 2082–2094 (2004).

  62. 62.

    Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

  63. 63.

    Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

  64. 64.

    Dudarev, S. L., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

Download references


The surface science work at Tufts was supported by the Department of Energy Basic Energy Sciences programme under grant number DE-FG02-05ER15730. M.D.M. thanks Tufts Chemistry for an Illumina Fellowship. Financial support at Washington State University was provided by the National Science Foundation Early-concept Grants for Exploratory Research programme under contract number CBET-1552320 and the CAREER programme under contract number CBET-1653561. Our thanks also go to the donors of the American Chemical Society Petroleum Research Fund. A portion of the computer time for the computational work was performed at the Environmental Molecular Sciences Laboratory—a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is a multi-programme national laboratory operated for the US Department of Energy by Battelle.

Author information


  1. Department of Chemistry, Tufts University, Medford, MA, USA

    • Andrew J. Therrien
    • , Matthew D. Marcinkowski
    • , Felicia R. Lucci
    • , Benjamin Coughlin
    • , Alex C. Schilling
    •  & E. Charles H. Sykes
  2. The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA

    • Alyssa J. R. Hensley
    • , Renqin Zhang
    •  & Jean-Sabin McEwen
  3. Department of Physics and Astronomy, Washington State University, Pullman, WA, USA

    • Jean-Sabin McEwen
  4. Department of Chemistry, Washington State University, Pullman, WA, USA

    • Jean-Sabin McEwen
  5. Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, USA

    • Jean-Sabin McEwen


  1. Search for Andrew J. Therrien in:

  2. Search for Alyssa J. R. Hensley in:

  3. Search for Matthew D. Marcinkowski in:

  4. Search for Renqin Zhang in:

  5. Search for Felicia R. Lucci in:

  6. Search for Benjamin Coughlin in:

  7. Search for Alex C. Schilling in:

  8. Search for Jean-Sabin McEwen in:

  9. Search for E. Charles H. Sykes in:


A.J.T. carried out the sample preparation as well as the STM, STS, TPD, XPS and RAIRS experiments, and assisted with writing the manuscript. A.J.R.H. carried out the DFT calculations and assisted with writing the manuscript. M.D.M. assisted with the TPD and STM experiments. R.Z. assisted with the DFT calculations. F.R.L. assisted with the STM imaging and STS experiments. B.C. and A.C.S. assisted with the STM imaging and XPS experiments. J.-S.M. oversaw and guided the DFT calculations and assisted with writing the manuscript. E.C.H.S. conceived the project, directed the study and assisted with writing the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Jean-Sabin McEwen or E. Charles H. Sykes.

Supplementary information

  1. Supplementary Information

    Supplementary Discussion, Supplementary Figures 1–7, Supplementary Table 1 and Supplementary References

About this article

Publication history






Further reading