Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement

Abstract

Understanding the fundamental catalytic principles when the catalytic centre is confined in nanoscale space that is dimensionally comparable to the reactant molecule is crucial for designing high-performance catalysts. Theoretical studies with simplified model systems and ensemble experimental measurements have shown that chemical reactions in nanoconfined environments are largely different from those in bulk solution. Here, we design a well-defined platform with catalytic centres confined in the end of nanopores with controlled lengths to study the in situ dynamic behaviour of catalytic processes under nanoconfinement at the single-molecule and single-particle level. Variable single molecular mass transport behaviour reveals the heterogeneity of the confined environment in the nanopores. With the capability of decoupling mass transport factors from reaction kinetics in the well-defined platform, we quantitatively uncovered a confinement-induced enhancement in the activity of platinum nanoparticles inside the nanopores. The combination of the unique model catalyst and the single-molecule super-localization imaging technique paves the way to understanding nanoconfinement effects in catalysis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Multi-layer nanocatalysts as a model platform for simultaneously studying mass transport and heterogeneous surface catalysis.
Fig. 2: Diffusion coefficients of resorufin in 120-nm-long nanopores.
Fig. 3: Catalytic activities at the single-molecule, single-particle level with turnover resolution.
Fig. 4: Quantitative comparison of nanoconfinement effects on the catalytic activities between non-confined and mSiO2-confined platinum NPs.

References

  1. Petrosko, S. H., Johnson, R., White, H. & Mirkin, C. A. Nanoreactors: small spaces, big implications in chemistry. J. Am. Chem. Soc. 138, 7443–7445 (2016).

    Article  CAS  Google Scholar 

  2. Yang, F., Deng, D., Pan, X., Fu, Q. & Bao, X. Understanding nano effects in catalysis. Natl Sci. Rev. 2, 183–201 (2015).

    Article  Google Scholar 

  3. Lísal, M., Brennan, J. K. & Smith, W. R. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores. J. Chem. Phys. 124, 64712 (2006).

    Article  Google Scholar 

  4. Jakobtorweihen, S., Hansen, N. & Keil, F. J. Combining reactive and configurational-bias Monte Carlo: confinement influence on the propene metathesis reaction system in various zeolites. J. Chem. Phys. 125, 224709 (2006).

    Article  CAS  Google Scholar 

  5. Santiso, E. E., Kostov, M. K., George, A. M., Nardelli, M. B. & Gubbins, K. E. Confinement effects on chemical reactions—toward an integrated rational catalyst design. Appl. Surf. Sci. 253, 5570–5579 (2007).

    Article  CAS  Google Scholar 

  6. Malijevský, A. & Lísal, M. Density functional study of chemical reaction equilibrium for dimerization reactions in slit and cylindrical nanopores. J. Chem. Phys. 130, 164713 (2009).

    Article  Google Scholar 

  7. Santiso, E. E., George, A. M., Gubbins, K. E. & Nardelli, M. B. Effect of confinement by porous carbons on the unimolecular decomposition of formaldehyde. J. Chem. Phys. 125, 084711 (2006).

    Article  Google Scholar 

  8. Hansen, N., Jakobtorweihen, S. & Keil, F. J. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system. J. Chem. Phys. 122, 164705 (2005).

    Article  Google Scholar 

  9. Santiso, E. E., Nardelli, M. B. & Gubbins, K. E. A remarkable shape-catalytic effect of confinement on the rotational isomerization of small hydrocarbons. J. Chem. Phys. 128, 034704 (2008).

    Article  Google Scholar 

  10. Xiao, J., Pan, X., Guo, S., Ren, P. & Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137, 477–482 (2015).

    Article  CAS  Google Scholar 

  11. Bae, J. H., Han, J.-H., Han, D. & Chung, T. D. Effects of adsorption and confinement on nanoporous electrochemistry. Farad. Discuss. 164, 361–376 (2013).

    Article  CAS  Google Scholar 

  12. Bi, H., Qiao, L., Busnel, J.-M., Liu, B. & Girault, H. H. Kinetics of proteolytic reactions in nanoporous materials. J. Proteome Res. 8, 4685–4692 (2009).

    Article  CAS  Google Scholar 

  13. Chen, P.-C. et al. Tip-directed synthesis of multimetallic nanoparticles. J. Am. Chem. Soc. 137, 9167–9173 (2015).

    Article  CAS  Google Scholar 

  14. Deraedt, C. & Astruc, D. Supramolecular nanoreactors for catalysis. Coord. Chem. Rev. 324, 106–122 (2016).

    Article  CAS  Google Scholar 

  15. Deraedt, C., Pinaud, N. & Astruc, D. Recyclable catalytic dendrimer nanoreactor for part-per-million cuI catalysis of “click” chemistry in water. J. Am. Chem. Soc. 136, 12092–12098 (2014).

    Article  CAS  Google Scholar 

  16. Grochmal, A., Prout, L., Makin-Taylor, R., Prohens, R. & Tomas, S. Modulation of reactivity in the cavity of liposomes promotes the formation of peptide bonds. J. Am. Chem. Soc. 137, 12269–12275 (2015).

    Article  CAS  Google Scholar 

  17. Li, G. et al. Giant Raman response to the encapsulation of sulfur in narrow diameter single-walled carbon nanotubes. J. Am. Chem. Soc. 138, 40–43 (2016).

    Article  CAS  Google Scholar 

  18. Liu, H., Yu, H., Xiong, C. & Zhou, S. Architecture controlled PtNi@mSiO2 and Pt–NiO@mSiO2 mesoporous core–shell nanocatalysts for enhanced p-chloronitrobenzene hydrogenation selectivity. RSC Adv. 5, 20238–20247 (2015).

    Article  CAS  Google Scholar 

  19. Tagliazucchi, M. & Szleifer, I. How does confinement change ligand–receptor binding equilibrium? Protein binding in nanopores and nanochannels. J. Am. Chem. Soc. 137, 12539–12551 (2015).

    Article  CAS  Google Scholar 

  20. Zhai, B. et al. Enhanced hydrogen desorption properties of LiBH4–Ca(BH4)2 by a synergetic effect of nanoconfinement and catalysis. Int. J. Hydrog. Energy 41, 17462–17470 (2016).

    Article  CAS  Google Scholar 

  21. Zhao, H. et al. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nat. Nanotech. 11, 82–88 (2016).

    Article  CAS  Google Scholar 

  22. Zurner, A., Kirstein, J., Doblinger, M., Bräuchle, C. & Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 450, 705–708 (2007).

    Article  Google Scholar 

  23. Tran-Ba, K.-H., Finley, J. J., Higgins, D. A. & Ito, T. Single-molecule tracking studies of millimeter-scale cylindrical domain alignment in polystyrene–poly(ethylene oxide) diblock copolymer films induced by solvent vapor penetration. J. Phys. Chem. Lett. 3, 1968–1973 (2012).

    Article  CAS  Google Scholar 

  24. Jung, C. et al. Diffusion of oriented single molecules with switchable mobility in networks of long unidimensional nanochannels. J. Am. Chem. Soc. 130, 1638–1648 (2008).

    Article  CAS  Google Scholar 

  25. Feil, F., Cauda, V., Bein, T. & Bräuchle, C. Direct visualization of dye and oligonucleotide diffusion in silica filaments with collinear mesopores. Nano Lett. 12, 1354–1361 (2012).

    Article  CAS  Google Scholar 

  26. Rühle, B., Davies, M., Lebold, T., Bräuchle, C. & Bein, T. Highly oriented mesoporous silica channels synthesized in microgrooves and visualized with single-molecule diffusion. ACS Nano 6, 1948–1960 (2012).

    Article  Google Scholar 

  27. Lebold, T., Michaelis, J. & Brauchle, C. The complexity of mesoporous silica nanomaterials unravelled by single molecule microscopy. Phys. Chem. Chem. Phys. 13, 5017–5033 (2011).

    Article  CAS  Google Scholar 

  28. Roeffaers, M. B. J. et al. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439, 572–575 (2006).

    Article  CAS  Google Scholar 

  29. Ristanović, Z. et al. Quantitative 3D fluorescence imaging of single catalytic turnovers reveals spatiotemporal gradients in reactivity of zeolite H-ZSM-5 crystals upon steaming. J. Am. Chem. Soc. 137, 6559–6568 (2015).

    Article  Google Scholar 

  30. Ristanović, Z., Kubarev, A. V., Hofkens, J., Roeffaers, M. B. J. & Weckhuysen, B. M. Single molecule nanospectroscopy visualizes proton-transfer processes within a zeolite crystal. J. Am. Chem. Soc. 138, 13586–13596 (2016).

    Article  Google Scholar 

  31. Roeffaers, M. B. J. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 121, 9449–9453 (2009).

    Article  Google Scholar 

  32. Ristanović, Z. et al. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles. Angew. Chem. Int. Ed. 54, 1836–1840 (2015).

    Article  Google Scholar 

  33. Hendriks, F. C. et al. Single-molecule fluorescence microscopy reveals local diffusion coefficients in the pore network of an individual catalyst particle. J. Am. Chem. Soc. 139, 13632–13635 (2017).

    Article  CAS  Google Scholar 

  34. Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotech. 7, 237–241 (2012).

    Article  CAS  Google Scholar 

  35. Han, K. S., Liu, G., Zhou, X., Medina, R. E. & Chen, P. How does a single Pt nanocatalyst behave in two different reactions? A single-molecule study. Nano Lett. 12, 1253–1259 (2012).

    Article  CAS  Google Scholar 

  36. Andoy, N. M. et al. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 135, 1845–1852 (2013).

    Article  CAS  Google Scholar 

  37. Xu, W., Kong, J. S., Yeh, Y.-T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).

    Article  CAS  Google Scholar 

  38. Ha, J. W. et al. Super-resolution mapping of photogenerated electron and hole separation in single metal–semiconductor nanocatalysts. J. Am. Chem. Soc. 136, 1398–1408 (2014).

    Article  CAS  Google Scholar 

  39. Tachikawa, T., Yamashita, S. & Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single-molecule imaging and kinetic analysis. J. Am. Chem. Soc. 133, 7197–7204 (2011).

    Article  CAS  Google Scholar 

  40. Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    Article  CAS  Google Scholar 

  41. Sambur, J. B. & Chen, P. Distinguishing direct and indirect photoelectrocatalytic oxidation mechanisms using quantitative single-molecule reaction imaging and photocurrent measurements. J. Phys. Chem. C 120, 20668–20676 (2016).

    Article  CAS  Google Scholar 

  42. De Cremer, G. et al. High-resolution single-turnover mapping reveals intraparticle diffusion limitation in Ti–MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. 122, 920–923 (2010).

    Article  Google Scholar 

  43. Kubarev, A. V., Janssen, K. P. F. & Roeffaers, M. B. J. Noninvasive nanoscopy uncovers the impact of the hierarchical porous structure on the catalytic activity of single dealuminated mordenite crystals. ChemCatChem 7, 3646–3650 (2015).

    Article  CAS  Google Scholar 

  44. Joo, S. H. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009).

    Article  CAS  Google Scholar 

  45. Schilling, E. A., Kamholz, A. E. & Yager, P. Cell lysis and protein extraction in a microfluidic device with detection by a fluorogenic enzyme assay. Anal. Chem. 74, 1798–1804 (2002).

    Article  CAS  Google Scholar 

  46. Li, L., Kazoe, Y., Mawatari, K., Sugii, Y. & Kitamori, T. Viscosity and wetting property of water confined in extended nanospace simultaneously measured from highly-pressurized meniscus motion. J. Phys. Chem. Lett. 3, 2447–2452 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-1609225/1607305).

Author information

Authors and Affiliations

Authors

Contributions

B.D., Y.P., W.H. and N.F. conceived the idea, designed the experiments and wrote the manuscript. B.D., F.Z., K.C. and N.F. performed the imaging experiments. Y.P., T.W.G., Z.Q., C.X. and W.H. performed the synthesis and characterization of the nanocatalysts.

Corresponding authors

Correspondence to Wenyu Huang or Ning Fang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Tables 1– 2; Supplementary Figures 1–24; Supplementary Notes; Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Pei, Y., Zhao, F. et al. In situ quantitative single-molecule study of dynamic catalytic processes in nanoconfinement. Nat Catal 1, 135–140 (2018). https://doi.org/10.1038/s41929-017-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-017-0021-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing