Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A vision for sustainable additive manufacturing

Abstract

Radical technological innovations are emerging in response to environmental, economic and geopolitical pressures. This affects how we design and manufacture new solutions. Additive manufacturing, one of the enabling technologies of the digital transition, can support more-sustainable manufacturing processes if developed through a system-level approach. In this Perspective, we adopt such an approach: we propose to use established sustainable design methods to innovate additive manufacturing systems and to consider how to make additive manufacturing an enabler of sustainable design in combination with conventional manufacturing. We then discuss how to implement our vision to enable additive manufacturing for sustainability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Envisioning a new role for AM.

Similar content being viewed by others

References

  1. Gibson, I., Rosen, D., Stucker, B. & Khorasani, M. Additive Manufacturing Technologies (Springer, 2021). This book comprehensively overviews additive manufacturing technologies, detailing the main process principles, materials, design opportunities and digital workflow.

  2. Additive manufacturing market. Precedence Research https://www.precedenceresearch.com/additive-manufacturing-market (2023).

  3. ISO/ASTM 52900:2021, Additive Manufacturing—General Principles—Fundamentals and Vocabulary (ISO, 2021).

  4. Thompson, M. K. et al. Design for additive manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. Manuf. Technol. 65, 737–760 (2016).

    Article  Google Scholar 

  5. Rosen, D. & Wong, J. in Additive Manufacturing Design and Applications (eds Seifi, M. et al.) 1–14 (ASM International, 2023); https://doi.org/10.31399/asm.hb.v24A.a0006947

  6. The Next Production Revolution: Implications for Governments and Business (OECD, 2017).

  7. Telenko, C. & Seepersad, C. A comparison of the energy efficiency of selective laser sintering and injection molding of nylon parts. Rapid Prototyp. J. 18, 472–481 (2012).

    Article  Google Scholar 

  8. Azevedo, J. M. C., CabreraSerrenho, A. & Allwood, J. M. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329–336 (2018). This paper shows by an example how to objectively consider and analyse different aspects of a possible future manufacturing scenario in which AM would be scaled up to current production volumes.

    Article  CAS  Google Scholar 

  9. Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).

    Article  CAS  Google Scholar 

  10. Shi, Y. & Faludi, J. Using life cycle assessment to determine if high utilization is the dominant force for sustainable polymer additive manufacturing. Addit. Manuf. 35, 101307 (2020).

    CAS  Google Scholar 

  11. Liu, J. et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 57, 2457–2483 (2018).

    Article  Google Scholar 

  12. Priarone, P. C. & Ingarao, G. Towards criteria for sustainable process selection: on the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. J. Clean. Prod. 144, 57–68 (2017).

    Article  CAS  Google Scholar 

  13. Takeda, O. & Okabe, T. H. Current status of titanium recycling and related technologies. JOM 71, 1981–1990 (2019).

    Article  CAS  Google Scholar 

  14. Khorram Niaki, M. & Nonino, F. The Management of Additive Manufacturing (Springer, 2018).

  15. Van Sice, C. & Faludi, J. Comparing environmental impacts of metal additive manufacturing to conventional manufacturing. Proc. Des. Soc. 1, 671–680 (2021).

    Article  Google Scholar 

  16. Gutowski, T. et al. Note on the rate and energy efficiency limits for additive manufacturing. J. Ind. Ecol. 21, S69–S79 (2017).

    Article  CAS  Google Scholar 

  17. Yi, L. & Aurich, J. C. Energy performance evaluation of selective laser melting. Procedia CIRP 105, 559–564 (2022).

    Article  Google Scholar 

  18. Jørgen Hanssen, O. Environmental impacts of product systems in a life cycle perspective. J. Clean. Prod. 6, 299–311 (1998).

    Article  Google Scholar 

  19. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).

  20. Kellens, K. et al. Environmental dimensions of additive manufacturing: mapping application domains and their environmental implications. J. Ind. Ecol. 21, 49–69 (2017).

    Article  Google Scholar 

  21. Faludi, J., Baumers, M., Maskery, I. & Hague, R. Environmental impacts of selective laser melting: do printer, powder, or power dominate? J. Ind. Ecol. 21, S144–S156 (2017).

    Article  CAS  Google Scholar 

  22. Olivetti, E. A. & Cullen, J. M. Toward a sustainable materials system. Science 360, 1396–1398 (2018). This paper promotes a systemic view towards achieving sustainable products by considering the environmental life cycle of materials.

    Article  CAS  Google Scholar 

  23. Yang, S., Min, W., Ghibaudo, J. & Zhao, Y. F. Understanding the sustainability potential of part consolidation design supported by additive manufacturing. J. Clean. Prod. 232, 722–738 (2019).

    Article  Google Scholar 

  24. Markus, K. Solar Sinter Project (Royal College of Art, 2011).

  25. Rosenthal, M., Henneberger, C., Gutkes, A. & Bues, C.-T. Liquid deposition modeling: a promising approach for 3D printing of wood. Holz Roh Werkst 76, 797–799 (2018).

    Article  CAS  Google Scholar 

  26. Rael, R. & San Fratello, V. Printing Architecture: Innovative Recipes for 3D Printing (Princeton Architectural Press, 2018).

  27. Mogas-Soldevila, L., Duro-Royo, J. & Oxman, N. Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print. Addit. Manuf. 1, 141–151 (2014).

    Article  Google Scholar 

  28. Horn, M. et al. Multi-material additive manufacturing—recycling of binary metal powder mixtures by screening. Procedia CIRP 93, 50–55 (2020).

    Article  Google Scholar 

  29. Hiller, J. D. & Lipson, H. Fully recyclable multi-material printing. In Proc. 2009 International Solid Freeform Fabrication Symposium (ed. Bourell, D. L.) 98–106 (Univ. Texas, 2009); https://doi.org/10.26153/tsw/15092

  30. Faludi, J., Van Sice, C. M., Shi, Y., Bower, J. & Brooks, O. M. K. Novel materials can radically improve whole-system environmental impacts of additive manufacturing. J. Clean. Prod. 212, 1580–1590 (2019). This paper provides a foundational study on novel, bio-based AM materials, supported by a system-level analysis of their sustainability impacts.

    Article  CAS  Google Scholar 

  31. Byggeth, S., Broman, G. & Robèrt, K.-H. A method for sustainable product development based on a modular system of guiding questions. J. Clean. Prod. 15, 1–11 (2007).

    Article  Google Scholar 

  32. Hallstedt, S. I. & Isaksson, O. Material criticality assessment in early phases of sustainable product development. J. Clean. Prod. 161, 40–52 (2017).

    Article  Google Scholar 

  33. Hallstedt, S. I. Sustainability criteria and sustainability compliance index for decision support in product development. J. Clean. Prod. 140, 251–266 (2017). This paper provides a novel approach to define the sustainability design space and long-term sustainability criteria of a product solution, considering the complete life cycle.

    Article  Google Scholar 

  34. Blösch-Paidosh, A. & Shea, K. Industrial evaluation of design heuristics for additive manufacturing. Des. Sci. 8, e13 (2022).

    Article  Google Scholar 

  35. Alexander, S. M. et al. Qualitative data sharing and synthesis for sustainability science. Nat. Sustain 3, 81–88 (2020).

    Article  Google Scholar 

  36. Gomes, C. P., Fink, D., Van Dover, R. B. & Gregoire, J. M. Computational sustainability meets materials science. Nat. Rev. Mater. 6, 645–647 (2021).

    Article  Google Scholar 

  37. Soares, B. et al. Social life cycle performance of additive manufacturing in the healthcare industry: the orthosis and prosthesis cases. Int. J. Comput. Integr. Manuf. 34, 327–340 (2021).

    Article  Google Scholar 

  38. Naghshineh, B., Ribeiro, A., Jacinto, C. & Carvalho, H. Social impacts of additive manufacturing: a stakeholder-driven framework. Technol. Forecast. Soc. Change 164, 120368 (2021).

    Article  Google Scholar 

  39. Matos, F. & Jacinto, C. Additive manufacturing technology: mapping social impacts. J. Manuf. Technol. Manage. 30, 70–97 (2018).

    Article  Google Scholar 

  40. Alemán, M. W., Tomko, M. E., Linsey, J. S. & Nagel, R. L. How do you play that makerspace game? An ethnographic exploration of the habitus of engineering makerspaces. Res. Eng. Des. 33, 351–366 (2022).

    Article  Google Scholar 

  41. Brown, T. Change by Design. How Design Thinking Transforms Organizations and Inspires Innovation (Harper Collins, 2019).

  42. Bosqué, C. What are you printing? Ambivalent emancipation by 3D printing. Rapid Prototyp. J. 21, 572–581 (2015).

    Article  Google Scholar 

  43. Stephens, B., Azimi, P., El Orch, Z. & Ramos, T. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 79, 334–339 (2013).

    Article  CAS  Google Scholar 

  44. Azimi, P., Fazli, T. & Stephens, B. Predicting concentrations of ultrafine particles and volatile organic compounds resulting from desktop 3D printer operation and the impact of potential control strategies. J. Ind. Ecol. 21, S107–S119 (2017).

    Article  CAS  Google Scholar 

  45. Chen, R. et al. Exposure, assessment and health hazards of particulate matter in metal additive manufacturing: a review. Chemosphere 259, 127452 (2020).

    Article  CAS  Google Scholar 

  46. Oskui, S. M. et al. Assessing and reducing the toxicity of 3D-printed parts. Environ. Sci. Technol. Lett. 3, 1–6 (2016).

    Article  CAS  Google Scholar 

  47. Tedla, G., Jarabek, A. M., Byrley, P., Boyes, W. & Rogers, K. Human exposure to metals in consumer-focused fused filament fabrication (FFF)/3D printing processes. Sci. Total Environ. 814, 152622 (2022).

    Article  CAS  Google Scholar 

  48. Mason, R. B. & Taylor, C. S. Explosion of aluminum powder dust clouds. Ind. Eng. Chem. 29, 626–631 (1937).

    Article  CAS  Google Scholar 

  49. Broman, G. I. & Robèrt, K.-H. A framework for strategic sustainable development. J. Clean. Prod. 140, 17–31 (2017). This paper presents a framework including overarching socioecological sustainability principles used from a backcasting perspective for defining a sustainability vision.

    Article  Google Scholar 

  50. Yang, S. & Zhao, Y. F. Additive manufacturing-enabled design theory and methodology: a critical review. Int. J. Adv. Manuf. Technol. 80, 327–342 (2015). This review paper analyses the suitability of engineering design theory and methodology to support DfAM and finds it lacking since it does not encourage the development of creative ideas that benefit from AM’s potential.

    Article  Google Scholar 

  51. Ackermann, L. Design for product care: enhancing consumers’ repair and maintenance activities. Des. J. 21, 543–551 (2018).

    Google Scholar 

  52. de Fazio, F., Bakker, C., Flipsen, B. & Balkenende, R. The disassembly map: a new method to enhance design for product repairability. J. Clean. Prod. 320, 128552 (2021).

    Article  Google Scholar 

  53. Sauerwein, M., Doubrovski, E., Balkenende, R. & Bakker, C. Exploring the potential of additive manufacturing for product design in a circular economy. J. Clean. Prod. 226, 1138–1149 (2019). This article provides a wide perspective on the opportunities enabled by AM when it comes to designing products while aiming at the realization of CE principles and includes insights from both the literature and empirical research.

    Article  Google Scholar 

  54. Bolaños Arriola, J., van Oudheusden, A. A., Flipsen, B. & Faludi, J. 3D Printing for Repair Guide (TU Delft OPEN, 2022).

    Book  Google Scholar 

  55. Samenjo, K., van Oudheusden, A., Arriola, J. B., Flipsen, B. & Faludi, J. Opportunities for 3D-printable spare parts: estimations from historical data. In Proc. PLATE 2021: The 4th Conference on Product Lifetimes and the Environment (ed. Fitzpatrick, C.) 1–10 (2022).

  56. Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F. & Ramani, K. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J. Clean. Prod. 80, 170–178 (2014).

    Article  Google Scholar 

  57. Aziz, N. A., Adnan, N. A. A., Wahab, D. A. & Azman, A. H. Component design optimisation based on artificial intelligence in support of additive manufacturing repair and restoration: current status and future outlook for remanufacturing. J. Clean. Prod. 296, 126401 (2021).

    Article  Google Scholar 

  58. Xiong, Y., Tang, Y., Zhou, Q., Ma, Y. & Rosen, D. W. Intelligent additive manufacturing and design: state of the art and future perspectives. Addit. Manuf. 59, 103139 (2022).

    Google Scholar 

  59. Go, T. F., Wahab, D. A. & Hishamuddin, H. Multiple generation life-cycles for product sustainability: the way forward. J. Clean. Prod. 95, 16–29 (2015).

    Article  Google Scholar 

  60. Aziz, N. A., Wahab, D. A., Ramli, R. & Azhari, C. H. Modelling and optimisation of upgradability in the design of multiple life cycle products: a critical review. J. Clean. Prod. 112, 282–290 (2016).

    Article  Google Scholar 

  61. Lindkvist Haziri, L. & Sundin, E. Supporting design for remanufacturing—a framework for implementing information feedback from remanufacturing to product design. J. Remanufacturing 10, 57–76 (2020).

    Article  Google Scholar 

  62. Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in Product Chains (PBL Netherlands Environmental Assessment Agency, 2017).

  63. Schlesinger, L., Koller, J., Pagels, M. & Döpper, F. Alignment of design rules for additive manufacturing and remanufacturing. J. Remanuf. https://doi.org/10.1007/s13243-022-00122-9 (2022).

    Article  Google Scholar 

  64. Charter, M. & Gray, C. Remanufacturing and product design. Int. J. Prod. Dev. 6, 375 (2008).

    Article  Google Scholar 

  65. Yang, S. S., Ong, S. K. & Nee, A. Y. C. A decision support tool for product design for remanufacturing. Procedia CIRP 40, 144–149 (2016).

    Article  Google Scholar 

  66. Ke, C., Jiang, Z., Zhang, H., Wang, Y. & Zhu, S. An intelligent design for remanufacturing method based on vector space model and case-based reasoning. J. Clean. Prod. 277, 123269 (2020).

    Article  Google Scholar 

  67. Kandukuri, S., Günay, E. E., Al-Araidah, O. & Okudan Kremer, G. E. Inventive solutions for remanufacturing using additive manufacturing: ETRIZ. J. Clean. Prod. 305, 126992 (2021).

    Article  Google Scholar 

  68. Liu, J., Zheng, Y., Ma, Y., Qureshi, A. & Ahmad, R. A topology optimization method for hybrid subtractive–additive remanufacturing. Int. J. Precis. Eng. Manuf. Green. Technol. 7, 939–953 (2020).

    Article  Google Scholar 

  69. Kanishka, K. & Acherjee, B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J. Manuf. Process. 89, 220–283 (2023).

    Article  Google Scholar 

  70. Kerin, M. & Pham, D. T. A review of emerging industry 4.0 technologies in remanufacturing. J. Clean. Prod. 237, 117805 (2019).

    Article  Google Scholar 

  71. Ardente, F., Talens Peiró, L., Mathieux, F. & Polverini, D. Accounting for the environmental benefits of remanufactured products: method and application. J. Clean. Prod. 198, 1545–1558 (2018).

    Article  Google Scholar 

  72. King, S. Recycling our way to sustainability. Nature 611, S7 (2022).

    Article  CAS  Google Scholar 

  73. Syberg, K. Beware the false hope of recycling. Nature 611, S6 (2022).

    Article  CAS  Google Scholar 

  74. Mikula, K. et al. 3D printing filament as a second life of waste plastics—a review. Environ. Sci. Pollut. Res. 28, 12321–12333 (2021).

    Article  Google Scholar 

  75. Cruz Sanchez, F. A., Boudaoud, H., Camargo, M. & Pearce, J. M. Plastic recycling in additive manufacturing: a systematic literature review and opportunities for the circular economy. J. Clean. Prod. 264, 121602 (2020).

    Article  Google Scholar 

  76. DeWeerdt, S. How to make plastic less of an environmental burden. Nature 611, S2–S5 (2022).

    Article  CAS  Google Scholar 

  77. Jiang, R., Kleer, R. & Piller, F. T. Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol. Forecast. Soc. Change 117, 84–97 (2017).

    Article  Google Scholar 

  78. Zuin, V. G. & Kümmerer, K. Chemistry and materials science for a sustainable circular polymeric economy. Nat. Rev. Mater. 7, 76–78 (2022).

    Article  Google Scholar 

  79. de Oliveira, C. T. & Oliveira, G. G. A. What circular economy indicators really measure? An overview of circular economy principles and sustainable development goals. Resour. Conserv. Recycl. 190, 106850 (2023).

    Article  Google Scholar 

  80. Polverini, D. Regulating the circular economy within the ecodesign directive: progress so far, methodological challenges and outlook. Sustain. Prod. Consum. 27, 1113–1123 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Design Society (www.designsociety.org) for supporting and promoting the activities of its special interest groups (SIGs). This Perspective results from a collaboration between the Design for Additive Manufacturing (DfAM) SIG and the Sustainable Design SIG.

Author information

Authors and Affiliations

Authors

Contributions

S.G., J.F., T.S., Y.B., N.M., S.I.H. and D.W.R. contributed equally to conceptualizing, drafting and revising the paper. S.G. coordinated the research team for the writing of the article.

Corresponding author

Correspondence to Serena Graziosi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graziosi, S., Faludi, J., Stanković, T. et al. A vision for sustainable additive manufacturing. Nat Sustain (2024). https://doi.org/10.1038/s41893-024-01313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41893-024-01313-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene