Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Green solvent enabled scalable processing of perovskite solar cells with high efficiency

Abstract

Perovskite solar cells (PSCs) have emerged as a promising next-generation photovoltaic technology for the future energy supply owing to their high efficiency, favourable solution processability and low cost. To accelerate their market entry, however, sustainability challenges remain to be cleared, particularly due to the heavy use of volatile and toxic organic solvents such as the mixture of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), which becomes even more problematic in mass production. Here we report eco-friendly biomass-derived green solvents with γ-valerolactone (GVL) and n-butyl acetate that allow for solution-based fabrication of high-quality FAPbI3 (FA, formamidinium) perovskite. Remarkably, the FAPbI3 perovskite ink remains stable for up to one year as a result of the high-valence [PbIx]2−x complexes and the strong interaction between GVL and FA+, which overcomes the otherwise instability of FA+ cations when DMF and DMSO are used. Equally important, upon further defect passivation engineering, our solar cells deliver a power conversion efficiency as high as 25.09%. Scaling up this green solvent method yields a mini-module with an aperture area of 12.25 cm2 that reaches a certified efficiency up to 20.23%, suggesting that our work has opened a sustainable pathway towards the practical application of this renewable energy technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the performance for DMF:DMSO and GVL-based precursor solutions.
Fig. 2: Characterizations of the chemical properties of the precursor solutions and crystallization processes of DMF:DMSO and GVL films.
Fig. 3: Characterizations of control and target films based on TBMAPbI3 perovskitoid passivation.
Fig. 4: Photovoltaic performance of control and target PSCs.
Fig. 5: Operational stability of PSCs and large-area PSMs.

Data availability

The data that support the findings of this study are available in the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  2. Best Research-Cell Efficiency Chart (NREL, 2023); www.nrel.gov/pv/cell-efficiency.html

  3. Goetz, K. P., Taylor, A. D., Hofstetter, Y. J. & Vaynzof, Y. Sustainability in perovskite solar cells. ACS Appl. Mater. Interfaces https://doi.org/10.1021/acsami.0c17269 (2021).

  4. Chen, S. et al. Preventing lead leakage with built-in resin layers for sustainable perovskite solar cells. Nat. Sustain. 4, 636–643 (2021).

    Article  Google Scholar 

  5. Vidal, R. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 4, 277–285 (2020).

    Article  Google Scholar 

  6. Chao, L. et al. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Adv. Mater. 33, 2005410 (2021).

    Article  CAS  Google Scholar 

  7. Gardner, K. L. et al. Nonhazardous solvent systems for processing perovskite photovoltaics. Adv. Energy Mater. 6, 1600386 (2016).

    Article  Google Scholar 

  8. Park, N.-G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  CAS  Google Scholar 

  9. Park, N.-G. Green solvent for perovskite solar cell production. Nat. Sustain. 4, 192–193 (2020).

    Article  Google Scholar 

  10. Worsley, C. et al. γ‐valerolactone: a nontoxic green solvent for highly stable printed mesoporous perovskite solar cells. Energy Technol. 9, 2100312 (2021).

    Article  CAS  Google Scholar 

  11. Worsley, C. et al. Green solvent engineering for enhanced performance and reproducibility in printed carbon-based mesoscopic perovskite solar cells and modules. Mater. Adv. 3, 1125–1138 (2022).

    Article  CAS  Google Scholar 

  12. Yun, H.-S. et al. Ethanol-based green-solution processing of α-formamidinium lead triiodide perovskite layers. Nat. Energy 7, 828–834 (2022).

    Article  CAS  Google Scholar 

  13. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  CAS  Google Scholar 

  14. Dou, B. et al. Degradation of highly alloyed metal halide perovskite precursor inks: mechanism and storage solutions. ACS Energy Lett. 3, 979–985 (2018).

    Article  CAS  Google Scholar 

  15. Hamill, J. C., Sorli, J. C., Pelczer, I., Schwartz, J. & Loo, Y.-L. Acid-catalyzed reactions activate DMSO as a reagent in perovskite precursor inks. Chem. Mater. 31, 2114–2120 (2019).

    Article  CAS  Google Scholar 

  16. Shin, G. S., Zhang, Y. & Park, N. G. Stability of precursor solution for perovskite solar cell: mixture (FAI + PbI2) versus synthetic FAPbI3 crystal. ACS Appl. Mater. Interfaces 12, 15167–15174 (2020).

    Article  CAS  Google Scholar 

  17. Noel, N. K. et al. Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1, 328–343 (2017).

    Article  CAS  Google Scholar 

  18. Wang, X. et al. Perovskite solution aging: what happened and how to inhibit? Chem 6, 1369–1378 (2020).

    Article  CAS  Google Scholar 

  19. Yang, M. et al. Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017).

    Article  CAS  Google Scholar 

  20. Bu, T. et al. Lead halide-templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 372, 1327–1332 (2021).

    Article  CAS  Google Scholar 

  21. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  CAS  Google Scholar 

  22. Li, Y., Xie, H., Lim, E. L., Hagfeldt, A. & Bi, D. Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 12, 2102730 (2021).

    Article  Google Scholar 

  23. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  24. Fan, J. et al. Thermodynamically self-healing 1D–3D hybrid perovskite solar cells. Adv. Energy Mater. 8, 1703421 (2018).

    Article  Google Scholar 

  25. Miao, Y. et al. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics. eScience 1, 91–97 (2021).

    Article  Google Scholar 

  26. Mellmer, M. A. et al. Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018).

    Article  CAS  Google Scholar 

  27. Luterbacher, J. S. et al. Nonenzymatic sugar production from biomass using biomass-derived γ-valerolactone. Science 343, 277–280 (2014).

    Article  CAS  Google Scholar 

  28. Motagamwala, A. H. et al. Toward biomass-derived renewable plastics: production of 2,5-furandicarboxylic acid from fructose. Sci. Adv. 4, eaap9722 (2018).

    Article  Google Scholar 

  29. Ahlawat, P. et al. Atomistic mechanism of the nucleation of methylammonium lead iodide perovskite from solution. Chem. Mater. 32, 529–536 (2019).

    Article  Google Scholar 

  30. Li, B., Dai, Q., Yun, S. & Tian, J. Insights into iodoplumbate complex evolution of precursor solutions for perovskite solar cells: from aging to degradation. J. Mater. Chem. A 9, 6732–6748 (2021).

    Article  CAS  Google Scholar 

  31. Gutmann, V. Solvent effects on the reactivities of organometallic compounds. Coord. Chem. Rev. 18, 225–255 (1976).

    Article  CAS  Google Scholar 

  32. Yan, K. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

    Article  CAS  Google Scholar 

  33. Shin, G. S., Kim, S. G., Zhang, Y. & Park, N. G. A correlation between iodoplumbate and photovoltaic performance of perovskite solar cells observed by precursor solution aging. Small Methods 4, 1900398 (2019).

    Article  Google Scholar 

  34. Kim, J. et al. Unveiling the relationship between the perovskite precursor solution and the resulting device performance. J. Am. Chem. Soc. 142, 6251–6260 (2020).

    Article  CAS  Google Scholar 

  35. Wang, X. et al. Tailoring component interaction for air-processed efficient and stable all-inorganic perovskite photovoltaic. Angew. Chem. Int. Ed. 59, 13354–13361 (2020).

    Article  CAS  Google Scholar 

  36. Jiang, X. et al. One-step synthesis of SnI2.(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143, 10970–10976 (2021).

    Article  CAS  Google Scholar 

  37. Min, H. et al. Stabilization of precursor solution and perovskite layer by addition of sulfur. Adv. Energy Mater. 9, 1803476 (2019).

    Article  Google Scholar 

  38. Ho, T.-L. Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 75, 1–20 (1975).

    Article  CAS  Google Scholar 

  39. Hui, W. et al. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 371, 1359–1364 (2021).

    Article  CAS  Google Scholar 

  40. Yuan, S. et al. NbF5: a novel α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv. Funct. Mater. 29, 1807850 (2019).

    Article  CAS  Google Scholar 

  41. Moloney, E. G. et al. Inhibition of amine–water proton exchange stabilizes perovskite ink for scalable solar cell fabrication. Chem. Mater. 34, 4394–4402 (2022).

    Article  CAS  Google Scholar 

  42. Nenon, D. P. et al. Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ. Sci. 9, 2072–2082 (2016).

    Article  CAS  Google Scholar 

  43. Yoo, J. W. et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethanol-based formamidinium lead tri-iodide precursor solution. Joule 5, 2420–2436 (2021).

    Article  CAS  Google Scholar 

  44. Chen, S. et al. Stabilizing perovskite-substrate interfaces for high-performance perovskite modules. Science 373, 902–907 (2021).

    Article  CAS  Google Scholar 

  45. Tumen‐Ulzii, G. et al. Detrimental effect of unreacted PbI2 on the long‐term stability of perovskite solar cells. Adv. Mater. 32, 1905035 (2020).

    Article  Google Scholar 

  46. Zhao, Y. et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science 377, 531–534 (2022).

    Article  CAS  Google Scholar 

  47. Zhang, T. et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science 377, 495–501 (2022).

    Article  CAS  Google Scholar 

  48. Zhao, P. et al. Antisolvent with an ultrawide processing window for the one-step fabrication of efficient and large-area perovskite solar cells. Adv. Mater. 30, e1802763 (2018).

    Article  Google Scholar 

  49. Yang, Z. et al. Slot-die coating large-area formamidinium–cesium perovskite film for efficient and stable parallel solar module. Sci. Adv. 7, eabg3749 (2021).

    Article  CAS  Google Scholar 

  50. Lee, J. W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).

    Article  CAS  Google Scholar 

  51. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  CAS  Google Scholar 

  52. Han, Q. et al. Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28, 2253–2258 (2016).

    Article  CAS  Google Scholar 

  53. Chen, G. et al. Air‐stable highly crystalline formamidinium perovskite 1D structures for ultrasensitive photodetectors. Adv. Funct. Mater. 30, 1908894 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shanghai Synchrotron Radiation Facility for the assistance on GIWAXS measurements. We also thank the Instrumental Analysis Center (School of Environmental Science and Engineering and Shanghai Jiao Tong University) for assistance with material characterization tests. This work was supported by the National Natural Science Foundation of China (NSFC, grant no. 22025505 (Y.Z.), 22220102002 (Y.Z.), 52203334 (Y.M.), 42171268 (T.W.)), Program of Shanghai Academic/Technology Research Leader (grant no. 20XD1422200 (Y.Z.)), Natural Science Foundation of Shanghai (23ZR1432300 (Y.M.)) and the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2022ZD105 (Y.M.)).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and T.W. designed and directed the research. Y.M. and M.R. carried out the device fabrication and sample preparation. H.W. assisted with the fabrication of mini-modules. H.C. and X.L. participated in SEM, GIWAXS and TRPL characterizations and data analysis. Y.Z., T.W., Y.M. and Y.C. wrote the paper with inputs from all authors.

Corresponding authors

Correspondence to Tianfu Wang or Yixin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Nam-Gyu Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1 and 2 and references.

Reporting Summary

Source data

Source Data Fig. 1

Source data of Fig. 1e.

Source Data Fig. 2

Source data of Fig. 2a–d.

Source Data Fig. 3

Source data of Fig. 3a,d–f.

Source Data Fig. 4

Source data Fig. 4b–f.

Source Data Fig. 5

Source data Fig. 5a,c,d.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Y., Ren, M., Chen, Y. et al. Green solvent enabled scalable processing of perovskite solar cells with high efficiency. Nat Sustain 6, 1465–1473 (2023). https://doi.org/10.1038/s41893-023-01196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-023-01196-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing