Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opportunities to curb hydrological alterations via dam re-operation in the Mekong

Abstract

In rivers around the world, hydropower development has altered the seasonal hydrological regime, which drives key ecosystem services. Dam re-operation efforts that minimize hydrological alterations are, therefore, critical to biological conservation, particularly in the tropics, where dam development is still booming. Here, we identify the limits and opportunities of alternative dam-management strategies in the Mekong, a biodiverse but rapidly developing river. We show that basin-wide efforts are needed to completely restore seasonal hydrological variability, probably an unfeasible solution in the Mekong’s institutional landscape. Instead, re-operation efforts focused on the Lower Mekong could yield tangible opportunities for partially restoring key elements of hydrological variability without affecting hydropower production. In fact, changing production plans across a few critical dams could raise Laos’ hydropower revenues by almost US$150 million per year (a third of the country’s hydropower revenues). Nexus solutions such as this one are a potential basis for safeguarding crucial economic interests and catalysing sustainable river management in international rivers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study site.
Fig. 2: Average annual hydropower production, firm production and deviation from natural flow conditions for 31 scenarios: BAU, MAX_MB, MAX_LMB and 28 optimized re-operation strategies.
Fig. 3: Relation between 30-day minimum and maximum flow conditions (at Stung Treng) and annual maximum flood extent in the Mekong.
Fig. 4: Flow conditions at Stung Treng under five hydrological scenarios.
Fig. 5: Performance of the Thai, Laotian and Cambodian power systems.

Similar content being viewed by others

Data availability

The data generated in this study have been deposited in Zenodo under the accession code https://doi.org/10.5281/zenodo.5895205.

Code availability

The hydrological water-management model VIC-Res is available at https://github.com/thanhiwer/VICRes. The implementation of the power system model (PowNet) for Thailand, Laos and Cambodia is available at https://github.com/kamal0013/PowNet.

References

  1. Junk, W. J. Long-term environmental trends and the future of tropical wetlands. Environ. Conserv. 29, 414–435 (2002).

    Article  Google Scholar 

  2. Tockner, K. & Stanford, J. A. Riverine flood plains: present state and future trends. Environ. Conserv. 29, 308–330 (2002).

    Article  Google Scholar 

  3. Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).

    Article  CAS  Google Scholar 

  4. Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).

    Article  CAS  Google Scholar 

  5. Poff, N. L., Olden, J. D., Merritt, D. M. & Pepin, D. M. Homogenization of regional river dynamics by dams and global biodiversity implications. Proc. Natl Acad. Sci. USA 104, 5732–5737 (2007).

    Article  CAS  Google Scholar 

  6. Junk, W. J., Bayley, P. B. & Sparks, R. E. et al. The flood pulse concept in river–floodplain systems. Can. J. Fish. Aquat. Sci. 106, 110–127 (1989).

    Google Scholar 

  7. Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).

    Article  CAS  Google Scholar 

  8. McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    Article  CAS  Google Scholar 

  9. O’Connor, J. E., Duda, J. J. & Grant, G. E. 1,000 dams down and counting. Science 348, 496–497 (2015).

    Google Scholar 

  10. Baumann, P. & Stevanella, G. Fish passage principles to be considered for medium and large dams: the case study of a fish passage concept for a hydroelectric power project on the Mekong mainstem in Laos. Ecol. Eng. 48, 79–85 (2012).

    Article  Google Scholar 

  11. Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).

    Article  CAS  Google Scholar 

  12. Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).

    Article  CAS  Google Scholar 

  13. Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biol. 55, 147–170 (2010).

    Article  Google Scholar 

  14. Acreman, M. et al. Environmental flows for natural, hybrid, and novel riverine ecosystems in a changing world. Front. Ecol. Environ. 12, 466–473 (2014).

    Article  Google Scholar 

  15. Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: implications for river restoration. Science 365, eaaw2087 (2019).

    Article  CAS  Google Scholar 

  16. Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

    Article  Google Scholar 

  17. Jumani, S. et al. River fragmentation and flow alteration metrics: a review of methods and directions for future research. Environ. Res. Lett. 15, 123009 (2020).

    Article  Google Scholar 

  18. Olden, J. D. et al. Are large-scale flow experiments informing the science and management of freshwater ecosystems? Front. Ecol. Environ. 12, 176–185 (2014).

    Article  Google Scholar 

  19. Opperman, J. J., Kendy, E. & Barrios, E. Securing environmental flows through system reoperation and management: lessons from case studies of implementation. Front. Environ. Sci. 7, 104 (2019).

    Article  Google Scholar 

  20. Sabo, J. L. et al. Designing river flows to improve food security futures in the Lower Mekong basin. Science 358, eaao1053 (2017).

    Article  Google Scholar 

  21. Chen, W. & Olden, J. D. Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat. Commun. 8, 2158 (2017).

    Article  Google Scholar 

  22. Merme, V., Ahlers, R. & Gupta, J. Private equity, public affair: hydropower financing in the Mekong basin. Glob. Environ. Change 24, 20–29 (2014).

    Article  Google Scholar 

  23. Owusu, A., Mul, M., Van Der Zaag, P. & Slinger, J. May the odds be in your favor: why many attempts to reoperate dams for the environment stall. J. Water Resour. Plann. Manage. 148, 04022009 (2022).

    Article  Google Scholar 

  24. Hetch, J. S., Lacombe, G., Arias, M. E., Dang, T. D. & Piman, T. Hydropower dams of the Mekong River basin: a review of their hydrological impacts. J. Hydrol. 568, 285–300 (2019).

    Article  Google Scholar 

  25. Dang, H. et al. Hydrologic balance and inundation dynamics of Southeast Asia’s largest inland lake altered by hydropower dams in the Mekong River basin. Sci. Total Environ. 831, 154833 (2022).

    Article  CAS  Google Scholar 

  26. Latrubesse, E. M. et al. Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau), southern Laos, 2018. Geomorphology 362, 107221 (2020).

    Article  Google Scholar 

  27. Chowdhury, A. K., Dang, T. D., Nguyen, H. T., Koh, R. & Galelli, S. The greater Mekong’s climate–water–energy nexus: how ENSO-triggered regional droughts affect power supply and CO2 emissions. Earth’s Future 9, e2020EF001814 (2021).

    Article  Google Scholar 

  28. Schmitt, R. J., Bizzi, S., Castelletti, A., Opperman, J. & Kondolf, G. M. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong. Sci. Adv. 5, eaaw2175 (2019).

    Article  CAS  Google Scholar 

  29. Cochrane, T. A., Arias, M. E. & Piman, T. Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system. Hydrol. Earth Syst. Sci. 18, 4529–4541 (2014).

    Article  Google Scholar 

  30. Dang, T. D., Cochrane, T. A., Arias, M. E., Van, P. D. T. & de Vries, T. T. Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrol. Processes 30, 3824–3838 (2016).

    Article  Google Scholar 

  31. Räsänen, T. A. et al. Observed river discharge changes due to hydropower operations in the Upper Mekong basin. J. Hydrol. 545, 28–41 (2017).

    Article  Google Scholar 

  32. Halls, A. S. & Hortle, K. G. Flooding is a key driver of the Tonle Sap dai fishery in Cambodia. Sci. Rep. 11, 3806 (2021).

    Article  CAS  Google Scholar 

  33. Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, D. P. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10, 1163–1174 (1996).

    Article  Google Scholar 

  34. Arias, M. E., Piman, T., Lauri, H., Cochrane, T. A. & Kummu, M. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap floodplain in Cambodia. Hydrol. Earth Syst. Sci. 18, 5303–5315 (2014).

    Article  Google Scholar 

  35. Williams, J. M. Is three a crowd? River basin institutions and the governance of the Mekong River. Int. J. Water Resour. Dev. 37, 720–740 (2021).

    Article  Google Scholar 

  36. Tiezzi, S. Facing Mekong drought, China to release water from Yunnan Dam. The Diplomat https://thediplomat.com/2016/03/facing-mekong-drought-china-to-release-water-from-yunnan-dam/ (2016).

  37. Johnson, K. China commits to share year-round water data with Mekong River Commission. Reuters https://www.reuters.com/article/us-mekong-river/china-commits-to-share-year-round-water-data-with-mekong-river-commission-idINKBN277135 (2020).

  38. Ulibarri, N. Tracing process to performance of collaborative governance: a comparative case study of federal hydropower licensing. Policy Stud. J. 43, 283–308 (2015).

    Article  Google Scholar 

  39. Pool, T. et al. Fish assemblage composition within the floodplain habitat mosaic of a tropical lake (Tonle Sap, Cambodia). Freshwater Biol. 64, 2026–2036 (2019).

    Article  Google Scholar 

  40. Arthington, A. H., Bunn, S. E., Poff, N. L. & Naiman, R. J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 16, 1311–1318 (2006).

    Article  Google Scholar 

  41. Halls, A. S. & Welcomme, R. L. Dynamics of river fish populations in response to hydrological conditions: a simulation study. River Res. Appl. 20, 985–1000 (2004).

    Article  Google Scholar 

  42. Ngor, P. B. et al. Evidence of indiscriminate fishing effects in one of the world's largest inland fisheries. Sci. Rep. 8, 8947 (2018).

    Article  Google Scholar 

  43. Bonnema, M., Hossain, F., Nijssen, B. & Holtgrieve, G. Hydropower’s hidden transformation of rivers in the Mekong. Environ. Res. Lett. 15, 044017 (2020).

    Article  Google Scholar 

  44. Siala, K., Chowdhury, A. K., Dang, T. & Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 12, 4159 (2021).

    Article  CAS  Google Scholar 

  45. Hauer, C., Siviglia, A. & Zolezzi, G. Hydropeaking in regulated rivers—from process understanding to design of mitigation measures. Sci. Total Environ. 579, 22–26 (2017).

    Article  CAS  Google Scholar 

  46. Ahmed, T. et al. ASEAN power grid: a secure transmission infrastructure for clean and sustainable energy for South-East Asia. Renew. Sust. Energy Rev. 67, 1420–1435 (2017).

    Article  Google Scholar 

  47. Mohammed, I. N., Bolten, J. D., Souter, N. J., Shaad, K. & Vollmer, D. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Sci. Rep. 12, 796 (2022).

    Article  CAS  Google Scholar 

  48. Chowdhury, A. K. et al. Enabling a low-carbon electricity system for southern Africa. Joule 6, 1826–1844 (2022).

    Article  Google Scholar 

  49. Giuliani, M., Lamontagne, J., Reed, P. & Castelletti, A. A state-of-the-art review of optimal reservoir control for managing conflicting demands in a changing world. Water Resour. Res. 57, e2021WR029927 (2021).

    Article  Google Scholar 

  50. Turner, S. W., Ng, J. Y. & Galelli, S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model. Sci. Total Environ. 590-591, 663–675 (2017).

    Article  CAS  Google Scholar 

  51. De Stefano, L., Petersen-Perlman, J. D., Sproles, E. A., Eynard, J. & Wolf, A. T. Assessment of transboundary river basins for potential hydro-political tensions. Glob. Environ. Change 45, 35–46 (2017).

    Article  Google Scholar 

  52. Liang, X., Lettenmaier, D. P., Wood, E. F. & Burges, S. J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 99, 14415–14428 (1994).

    Article  Google Scholar 

  53. Dang, T. D., Vu, D. T., Chowdhury, A. K. & Galelli, S. A software package for the representation and optimization of water reservoir operations in the VIC hydrologic model. Environ. Modell. Software 126, 104673 (2020).

    Article  Google Scholar 

  54. Chowdhury, A. K., Dang, T. D., Bagchi, A. & Galelli, S. Expected benefits of Laos’ hydropower development curbed by hydro-climatic variability and limited transmission capacity: opportunities to reform. J. Water Resour. Plann. Manage. 146, 05020019 (2020).

    Article  Google Scholar 

  55. Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    Article  Google Scholar 

  56. Reed, P. M., Hadka, D., Herman, J. D., Kasprzyk, J. R. & Kollat, J. B. Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv. Water Resour. 51, 438–456 (2013).

    Article  Google Scholar 

  57. Shin, S. et al. High resolution modeling of river–floodplain–reservoir inundation dynamics in the Mekong River basin. Water Resour. Res. 56, e2019wr026449 (2020).

    Article  Google Scholar 

  58. Kabir, T., Pokhrel, Y. & Felfelani, F. On the precipitation-induced uncertainties in process-based hydrological modeling in the Mekong River basin. Water Resour. Res. 58, e2021WR030828 (2022).

    Article  Google Scholar 

  59. Piman, T., Cochrane, T., Arias, M., Green, A. & Dat, N. Assessment of flow changes from hydropower development and operations in Sekong, Sesan, and Srepok Rivers of the Mekong basin. J. Water Resour. Plann. Manage. 139, 723–732 (2013).

    Article  Google Scholar 

  60. Chowdhury, A. K., Kern, J., Dang, T. D. & Galelli, S. PowNet: a network-constrained unit commitment/economic dispatch model for large-scale power systems analysis. J. Open Res. Software 8, 5 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by Singapore’s Ministry of Education (MoE) through the Tier 2 project ‘Linking water availability to hydropower supply—an engineering systems approach’ (award number MOE2017-T2-1-143). This manuscript was completed while M.E.A. was a McKnight Junior Faculty Fellow, sponsored by the Florida Education Fund.

Author information

Authors and Affiliations

Authors

Contributions

S.G. and M.E.A. designed the research; T.D.D., J.Y.N. and A.F.M.K.C. performed the research; T.D.D. and J.Y.N. analysed data; and S.G. and M.E.A. wrote the paper.

Corresponding author

Correspondence to Stefano Galelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Daniel Loucks, Ibrahim Nourein Mohammed and Yadu Pokhrel for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–5, Figs. 1–16 and Tables 1–10.

Reporting Summary.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galelli, S., Dang, T.D., Ng, J.Y. et al. Opportunities to curb hydrological alterations via dam re-operation in the Mekong. Nat Sustain 5, 1058–1069 (2022). https://doi.org/10.1038/s41893-022-00971-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00971-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene