Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A theoretical framework for oxygen redox chemistry for sustainable batteries

Abstract

Lithium-rich layered oxides have emerged as a new model for designing the next generation of cathode materials for batteries to assist the transition to a greener energy system. The unique oxygen redox mechanism of such cathodes enables extra energy storage capacity beyond the contribution from merely transition metal ions; however, their practical application is hindered by the destabilizing structural changes during operation. Here we present a theoretical framework for the triptych of structural disorder, bond covalency and oxygen redox chemistry that applies to a wide range of layered oxides. It is revealed that structural disorder stabilizes the oxygen redox by promoting the formation of oxygen covalent bonds in favour of electrochemical reversibility. Oxygen dimers are found to move freely within the lattice structure and serve as a key catalyst of the poor structural resilience. Such fundamental understanding provides fresh insights that could inform strategies to mitigate the limitations of anionic redox cathodes, moving us a step closer to tapping into their enormous potential.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Bonding rearrangements associated with cation disordering in charge-transfer systems.
Fig. 2: Bonding rearrangements associated with cation disordering in Mott–Hubbard systems.
Fig. 3: Effects of bonding rearrangements on voltage profiles.
Fig. 4: Effects of oxygen dimerization and oxygen vacancy on electrochemical and structural reversibility.
Fig. 5: Voltage profiles considering structural disordering.

Data availability

The data supporting the findings of this study are provided in the article and its Supplementary Information and will be available from the corresponding author on reasonable request.

References

  1. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  2. Konishi, H. et al. Origin of hysteresis between charge and discharge processes in lithium-rich layer-structured cathode material for lithium-ion battery. J. Power Sources 298, 144–149 (2015).

    Article  CAS  Google Scholar 

  3. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article  CAS  Google Scholar 

  4. Assat, G., Glazier, S. L., Delacourt, C. & Tarascon, J.-M. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nat. Energy 4, 647–656 (2019).

    Article  CAS  Google Scholar 

  5. Gent, W. E., Abate, I. I., Yang, W., Nazar, L. F. & Chueh, W. C. Design rules for high-valent redox in intercalation electrodes. Joule 4, 1369–1397 (2020).

    Article  CAS  Google Scholar 

  6. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  Google Scholar 

  7. Kleiner, K. et al. Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018).

    Article  CAS  Google Scholar 

  8. Nakamura, T. et al. Oxygen defect engineering for the Li-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2−δ. J. Mater. Chem. A 9, 3657–3667 (2021).

    Article  CAS  Google Scholar 

  9. Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  CAS  Google Scholar 

  10. Gent, W. E. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article  CAS  Google Scholar 

  11. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  Google Scholar 

  12. Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article  CAS  Google Scholar 

  13. Li, Q. et al. Dynamic imaging of crystalline defects in lithium–manganese oxide electrodes during electrochemical activation to high voltage. Nat. Commun. 10, 1692 (2019).

    Article  CAS  Google Scholar 

  14. Ku, K. et al. Suppression of voltage decay through manganese deactivation and nickel redox buffering in high-energy layered lithium-rich electrodes. Adv. Energy Mater. 8, 1800606 (2018).

    Article  CAS  Google Scholar 

  15. Hu, E. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 3, 690–698 (2018).

    Article  CAS  Google Scholar 

  16. Langmuir, I. The arrangement of electrons in atoms and molecules. J. Am. Chem. Soc. 41, 868–934 (1919).

    Article  CAS  Google Scholar 

  17. Ben Yahia, M., Vergnet, J., Saubanère, M. & Doublet, M.-L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  CAS  Google Scholar 

  18. Vergnet, J., Saubanère, M., Doublet, M.-L. & Tarascon, J.-M. The structural stability of P2-layered Na-based electrodes during anionic redox. Joule 4, 420–434 (2020).

    Article  CAS  Google Scholar 

  19. Sudayama, T. et al. Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. Energy Environ. Sci. 13, 1492–1500 (2020).

    Article  CAS  Google Scholar 

  20. Xie, Y., Saubanère, M. & Doublet, M. L. Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ. Sci. 10, 266–274 (2017).

    Article  CAS  Google Scholar 

  21. House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    Article  CAS  Google Scholar 

  22. Nakayama, K., Ishikawa, R., Kobayashi, S., Shibata, N. & Ikuhara, Y. Dislocation and oxygen-release driven delithiation in Li2MnO3. Nat. Commun. 11, 4452 (2020).

    Article  CAS  Google Scholar 

  23. Du, K. et al. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 9, 2575–2577 (2016).

    Article  CAS  Google Scholar 

  24. Song, B. et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox. J. Mater. Chem. A 7, 1491–1498 (2019).

    Article  CAS  Google Scholar 

  25. Grimaud, A. et al. Chemical activity of the peroxide/oxide redox couple: case study of Ba5Ru2O11 in aqueous and organic solvents. Chem. Mater. 30, 3882–3893 (2018).

    Article  CAS  Google Scholar 

  26. Luo, N. et al. Anionic oxygen redox in the high-lithium material Li8SnO6. Chem. Mater. 33, 834–844 (2021).

    Article  CAS  Google Scholar 

  27. Morrison, S. R. The Chemical Physics of Surfaces (Springer Science & Business Media, 2013).

  28. Abrahams, S. C. & Kalnajs, J. The crystal structure of α-potassium superoxide. Acta Crystallogr. 8, 503–506 (1955).

    Article  CAS  Google Scholar 

  29. Pandey, B., Ansari, A., Vyas, N. & Rajaraman, G. Structures, bonding and reactivity of iron and manganese high-valent metal-oxo complexes: a computational investigation. J. Chem. Sci. 127, 343–352 (2015).

    Article  CAS  Google Scholar 

  30. Hughbanks, T. & Hoffmann, R. Chains of trans-edge-sharing molybdenum octahedra: metal–metal bonding in extended systems. J. Am. Chem. Soc. 105, 3528–3537 (1983).

    Article  CAS  Google Scholar 

  31. Yu, Y. et al. Revealing electronic signatures of lattice oxygen redox in lithium ruthenates and implications for high-energy Li-ion battery material designs. Chem. Mater. 31, 7864–7876 (2019).

    Article  CAS  Google Scholar 

  32. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  33. Trnka, T. M. & Parkin, G. A survey of terminal chalcogenido complexes of the transition metals: trends in their distribution and the variation of their M=E bond lengths. Polyhedron 16, 1031–1045 (1997).

    Article  CAS  Google Scholar 

  34. Ning, F. et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat. Commun. 11, 4973 (2020).

    Article  CAS  Google Scholar 

  35. Ku, K. et al. A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy Environ. Sci. 13, 1269–1278 (2020).

    Article  CAS  Google Scholar 

  36. House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    Article  CAS  Google Scholar 

  37. Boivin, E. et al. Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2. Joule 5, 1267–1280 (2021).

    Article  CAS  Google Scholar 

  38. Tan, X., Liu, R., Xie, C. & Shen, Q. Modified structural characteristics and enhanced electrochemical properties of oxygen-deficient Li2MnO3−δ obtained from pristine Li2MnO3. J. Power Sources 374, 134–141 (2018).

    Article  CAS  Google Scholar 

  39. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  CAS  Google Scholar 

  40. Sathiya, M. et al. Li4NiTeO6 as a positive electrode for Li-ion batteries. Chem. Comm. 49, 11376–11378 (2013).

    Article  CAS  Google Scholar 

  41. Abate, I. I. et al. Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy Environ. Sci. 14, 4858–4867 (2021).

    Article  CAS  Google Scholar 

  42. Kitchaev, D. A., Vinckeviciute, J. & Van der Ven, A. Delocalized metal–oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. J. Am. Chem. Soc. 143, 1908–1916 (2021).

    Article  CAS  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  46. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  47. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    Article  CAS  Google Scholar 

  48. Dronskowski, R. & Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 97, 8617–8624 (1993).

    Article  CAS  Google Scholar 

  49. Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A 115, 5461–5466 (2011).

    Article  CAS  Google Scholar 

  50. Strobel, P. & Lambert-Andron, B. Crystallographic and magnetic structure of Li2MnO3. J. Solid State Chem. 75, 90–98 (1988).

    Article  CAS  Google Scholar 

  51. Lyu, Y. et al. Correlations between transition-metal chemistry, local structure, and global structure in Li2Ru0.5Mn0.5O3 investigated in a wide voltage window. Chem. Mater. 29, 9053–9065 (2017).

    Article  CAS  Google Scholar 

  52. Toukmaji, A. Y. & Board, J. A. Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996).

    Article  CAS  Google Scholar 

  53. Rong, X. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2, 125–140 (2018).

    Article  CAS  Google Scholar 

  54. House, R. A. et al. What triggers oxygen loss in oxygen redox cathode materials? Chem. Mater. 31, 3293–3300 (2019).

    Article  CAS  Google Scholar 

  55. Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 73, 195107 (2006).

    Article  CAS  Google Scholar 

  56. Chase, M. W. et al. JANAF thermochemical tables, 1982 supplement. J. Phys. Chem. Ref. Data 11, 695–940 (1982).

    Article  CAS  Google Scholar 

  57. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  58. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  59. Yoon, G. et al. Using first-principles calculations for the advancement of materials for rechargeable batteries. Adv. Funct. Mater. 27, 1702887 (2017).

    Article  CAS  Google Scholar 

  60. Kim, I., Do, J., Kim, H. & Jung, Y. Charge-transfer descriptor for the cycle performance of β-Li2MO3 cathodes: role of oxygen dimers. J. Mater. Chem. A 8, 2663–2671 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (no. NRF-2019M3E6A1064522). This research was also supported by the Project Code 2021M3H4A1A04093050 through the NRF funded by the Korea government and the Institute for Basic Science (IBS-R006-A2).

Author information

Authors and Affiliations

Authors

Contributions

B.K. and K.K. designed the project. B.K. performed first-principles calculations and analysed the data. J.-H.S. provided the fundamental idea for DFT calculations. D.E. and H.-Y.J. analysed the data with B.K.; S.Y. and K.O. provided technical assistance in performing AIMD calculations. M.H.L. provided a constructive idea to design computational models for AIMD calculations. B.K. and K.K. wrote the manuscript, and K.K. supervised all aspects of the research.

Corresponding author

Correspondence to Kisuk Kang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Matthieu Saubanère and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Notes 1–8 and Tables 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Song, JH., Eum, D. et al. A theoretical framework for oxygen redox chemistry for sustainable batteries. Nat Sustain 5, 708–716 (2022). https://doi.org/10.1038/s41893-022-00890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00890-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing