Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation

Abstract

Bioenergy with carbon capture and storage (BECCS) is crucial in many stringent climate scenarios. Although irrigation can enhance BECCS potential, where and to what extent it can enhance global BECCS potential are unknown when constrained by preventing additional water stress and suppressing withdrawal of nonrenewable water resources. With a spatially explicit representation of bioenergy crop plantations and water cycle in an internally consistent model framework, we identified the irrigable bioenergy cropland on the basis of the water resources reserve. Irrigation of such cropland enhanced BECCS potential by only 5–6% (<60–71% for unconstrained irrigation) above the rain-fed potential (0.82–1.99 Gt C yr−1) by the end of this century. Nonetheless, it limited additional water withdrawal (166–298 km3 yr−1), especially from nonrenewable water sources (16–20%), compared with unconstrained irrigation (1,392–3,929 km3 yr−1 and 73–78%). Our findings highlight the importance of irrigation constraints in global BECCS potential.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic figures showing the process used to develop the two land scenarios and the three distinct irrigation scenarios for bioenergy crop plantations.
Fig. 2: The global BECCS potential, corresponding bioenergy land area and additional irrigation water withdrawal under each combined scenario in 2090 (average of 2080–2099).
Fig. 3: Additional water stress due to additional irrigation water withdrawal for bioenergy crop plantations under PP_SI and PP_FI.
Fig. 4: Sensitivity tests for irrigated area, additional irrigation water withdrawal, non-sustainable water withdrawal and the BECCS potential with different WUFs and REFs.

Data availability

The AIM/Hub and AIM/PLUM outputs are available from the website https://www-iam.nies.go.jp/aim/data_tools/aimssp/aimssp.html. The input meteorological data are available at http://h08.nies.go.jp. All datasets used in this study are also available from the corresponding author on reasonable request.

Code availability

The code and technical information about the H08 model are available at http://h08.nies.go.jp. The code used for the simulation is also available from the corresponding author on reasonable request.

References

  1. 1.

    Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions (UNFCCC, 2015).

  2. 2.

    Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nat. Clim. Change 4, 99–105 (2014).

    Article  Google Scholar 

  3. 3.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

    Article  CAS  Google Scholar 

  4. 4.

    Minx, J. C. et al. Negative emissions—part 1: research landscape and synthesis. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabf9b (2018).

  5. 5.

    Rogelj, J. & Knutti, R. Geosciences after Paris. Nat. Geosci. 9, 187–189 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Daioglou, V., Doelman, J. C., Wicke, B., Faaij, A. & van Vuuren, D. P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Change 54, 88–101 (2019).

    Article  Google Scholar 

  8. 8.

    Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change https://doi.org/10.1007/s10584-020-02784-5 (2020).

  9. 9.

    Yamagata, Y. et al. Estimating water–food–ecosystem trade-offs for the global negative emission scenario (IPCC–RCP2.6). Sustain. Sci. 13, 301–313 (2018).

    Article  Google Scholar 

  10. 10.

    IPCC: Summary for Policymakers. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (IPCC, 2019).

  11. 11.

    Stokstad, E. Bioenergy not a climate cure-all, panel warns. Science 365, 527–528 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Reid, W. V., Ali, M. K. & Field, C. B. The future of bioenergy. Glob. Change Biol. 26, 274–286 (2020).

    Article  Google Scholar 

  14. 14.

    Hejazi, M. I. et al. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating. Proc. Natl Acad. Sci. USA 112, 10635–10640 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Fujimori, S. et al. Inclusive climate change mitigation and food security policy under 1.5 °C climate goal. Environ. Res. Lett. 13, 074033 (2018).

    Article  Google Scholar 

  16. 16.

    Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aa9e3b (2018).

  17. 17.

    Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change 4, 850–853 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. Glob. Change Biol. Bioenergy 7, 916–944 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Boysen, L. R., Lucht, W. & Gerten, D. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential. Glob. Change Biol. 23, 4303–4317 (2017).

    Article  Google Scholar 

  20. 20.

    Beringer, T. I. M., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob. Change Biol. Bioenergy 3, 299–312 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Change Biol. Bioenergy 8, 11–24 (2016).

    Article  Google Scholar 

  22. 22.

    Stenzel, F., Gerten, D., Werner, C. & Jägermeyr, J. Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab2b4b (2019).

  23. 23.

    Berndes, G. Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Glob. Environ. Change 12, 253–271 (2002).

    Article  Google Scholar 

  24. 24.

    Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways—part 1: water use. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).

    Article  Google Scholar 

  25. 25.

    Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways—part 2: water availability and scarcity. Hydrol. Earth Syst. Sci. 17, 2393–2413 (2013).

    Article  Google Scholar 

  26. 26.

    Hejazi, M. I. et al. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 18, 2859–2883 (2014).

    Article  Google Scholar 

  27. 27.

    Séférian, R., Rocher, M., Guivarch, C. & Colin, J. Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabcd7 (2018).

  28. 28.

    Wada, Y., Gleeson, T. & Esnault, L. Wedge approach to water stress. Nat. Geosci. 7, 615–617 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Mouratiadou, I. et al. The impact of climate change mitigation on water demand for energy and food: an integrated analysis based on the Shared Socioeconomic Pathways. Environ. Sci. Policy 64, 48–58 (2016).

    Article  Google Scholar 

  30. 30.

    Stenzel, F. et al. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 12, 1512 (2021).

    CAS  Article  Google Scholar 

  31. 31.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Kato, E. & Yamagata, Y. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earths Future 2, 421–439 (2014).

    Article  Google Scholar 

  33. 33.

    Daioglou, V. et al. Greenhouse gas emission curves for advanced biofuel supply chains. Nat. Clim. Change 7, 920–924 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    AQUASTAT Database (FAO, 2016); http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en

  35. 35.

    Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018).

    Article  Google Scholar 

  36. 36.

    Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Jans, Y., Berndes, G., Heinke, J., Lucht, W. & Gerten, D. Biomass production in plantations: land constraints increase dependency on irrigation water. Glob. Change Biol. Bioenergy 10, 628–644 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Fajardy, M., Chiquier, S. & Mac Dowell, N. Investigating the BECCS resource nexus: delivering sustainable negative emissions. Energy Environ. Sci. 11, 3408–3430 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Galik, C. S. A continuing need to revisit BECCS and its potential. Nat. Clim. Change 10, 2–3 (2019).

    Article  Google Scholar 

  40. 40.

    Mander, S., Anderson, K., Larkin, A., Gough, C. & Vaughan, N. The role of bio-energy with carbon capture and storage in meeting the climate mitigation challenge: a whole system perspective. Energy Procedia 114, 6036–6043 (2017).

    Article  Google Scholar 

  41. 41.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).

  42. 42.

    Jones, M. B. & Albanito, F. Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)? Glob. Change Biol. https://doi.org/10.1111/gcb.15296 (2020).

  43. 43.

    Butnar, I. et al. A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): a transparency exercise. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab5c3e (2019).

  44. 44.

    Heck, V., Gerten, D., Lucht, W. & Boysen, L. R. Is extensive terrestrial carbon dioxide removal a ‘green’ form of geoengineering? A global modelling study. Glob. Planet. Change 137, 123–130 (2016).

    Article  Google Scholar 

  45. 45.

    Hanssen, S. V. et al. Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Climatic Change 163, 1569–1586 (2020).

    Article  Google Scholar 

  46. 46.

    Hanssen, S. V. et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Change 10, 1023–1029 (2020).

    CAS  Article  Google Scholar 

  47. 47.

    Hanasaki, N. et al. An integrated model for the assessment of global water resources—part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).

    Article  Google Scholar 

  48. 48.

    Hanasaki, N. et al. An integrated model for the assessment of global water resources—part 2: applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008).

    Article  Google Scholar 

  49. 49.

    Ai, Z., Hanasaki, N., Heck, V., Hasegawa, T. & Fujimori, S. Simulating second-generation herbaceous bioenergy crop yield using the global hydrological model H08 (v.bio1). Geosci. Model Dev. 13, 6077–6092 (2020).

    Article  Google Scholar 

  50. 50.

    Shirakawa, N. Global estimation of environmental flow requirement based on river runoff seasonality. Annu. J. Hydraulic Eng. 49, 391–396 (2005).

    Article  Google Scholar 

  51. 51.

    Hanasaki, N. H08 Manual User’s Edition 2nd edn (National Institute for Environmental Studies, 2019); https://h08.nies.go.jp/h08/files/USERen_20190701.pdf

  52. 52.

    The World Database on Protected Areas (WDPA) (UNEP-WCMC, 2015); www.protectedplanet.net

  53. 53.

    Wu, W. et al. Global advanced bioenergy potential under environmental protection policies and societal transformation measures. Glob. Change Biol. Bioenergy https://doi.org/10.1111/gcbb.12614 (2019).

  54. 54.

    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    Article  Google Scholar 

  55. 55.

    Fujimori, S., Hasegawa, T., Ito, A., Takahashi, K. & Masui, T. Gridded emissions and land-use data for 2005–2100 under diverse socioeconomic and climate mitigation scenarios. Sci. Data 5, 180210 (2018).

    Article  Google Scholar 

  56. 56.

    Fujimori, S., Masui, T., & Matsuoka, Y. AIM/CGE [Basic] Manual Discussion Paper No. 2012-01 (Center for Social and Environmental Systems Research, 2012).

  57. 57.

    Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Frieler, K. et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 10, 4321–4345 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Z.A. and N.H. were supported by the Environment Research and Technology Development Fund (JPMEERF20202005 and JPMEERF15S11418) of the Environmental Restoration and Conservation Agency of Japan. T.H. and S.F. were supported by the Environment Research and Technology Development Fund (JPMEERF20211001) of the Environmental Restoration and Conservation Agency of Japan and the Sumitomo Foundation. T.H. was supported by the Ritsumeikan Global Innovation Research Organization (R-GIRO), Ritsumeikan University. We thank K. Takahashi, W. Wu and Y. Satoh for the discussion and technical support.

Author information

Affiliations

Authors

Contributions

N.H. and Z.A. conceived the research and designed the scenarios; Z.A. developed the code, conducted the simulation, analysed the data and prepared the manuscript; T.H. and S.F. contributed to the scenario design; N.H., V.H., T.H. and S.F. edited and improved the manuscript.

Corresponding author

Correspondence to Zhipin Ai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Sustainability thanks Vaibhav Chaturvedi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–12.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ai, Z., Hanasaki, N., Heck, V. et al. Global bioenergy with carbon capture and storage potential is largely constrained by sustainable irrigation. Nat Sustain (2021). https://doi.org/10.1038/s41893-021-00740-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing