Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Addressing the contribution of indirect potable reuse to inland freshwater salinization

Abstract

Inland freshwater salinity is rising worldwide, a phenomenon called the freshwater salinization syndrome (FSS). We investigate a potential conflict between managing the FSS and indirect potable reuse, the practice of augmenting water supplies through the addition of highly treated wastewater (reclaimed water) to surface waters and groundwaters. From time-series data collected over 25 years, we quantify the contributions of three salinity sources—a water reclamation facility and two rapidly urbanizing watersheds—to the rising concentration of sodium (a major ion associated with the FSS) in a regionally important drinking-water reservoir in the Mid-Atlantic United States. Sodium mass loading to the reservoir is primarily from watershed runoff during wet weather and reclaimed water during dry weather. Across all timescales evaluated, sodium concentration in the reclaimed water is higher than in outflow from the two watersheds. Sodium in reclaimed water originates from chemicals added during wastewater treatment, industrial and commercial discharges, human excretion and down-drain disposal of drinking water and sodium-rich household products. Thus, numerous opportunities exist to reduce the contribution of indirect potable reuse to sodium pollution at this site, and the FSS more generally. These efforts will require deliberative engagement with a diverse community of watershed stakeholders and careful consideration of the local political, social and environmental context.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Both IPR and human activities in the Bull Run and Occoquan River watersheds contribute to salinization of the Occoquan Reservoir in Northern Virginia, USA.
Fig. 2: Annualized sodium load and concentration in outflow from the Occoquan River, Bull Run and UOSA water reclamation facility.
Fig. 3: Daily sodium load and concentration in outflow from the Occoquan River, Bull Run and UOSA water reclamation facility for an illustrative two-year period (2012–2013).
Fig. 4: Probability density functions of the percentage sodium mass load entering the Occoquan Reservoir from the Occoquan River, Bull Run and UOSA conditioned on rate of flow into the reservoir.
Fig. 5: Sources of sodium discharged by the UOSA water reclamation facility.

Data availability

All data used in this study are publicly available (https://doi.org/10.4211/hs.61a19724394643fca62a4fb3ce881efe).

References

  1. 1.

    Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: causes, effects and prospects—introduction to the theme issue. Philos. Trans. R. Soc. Lond. B 374, 20180002 (2018).

    Article  CAS  Google Scholar 

  2. 2.

    Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337 (2001).

    Article  Google Scholar 

  3. 3.

    Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl Acad. Sci. USA 114, 4453–4458 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl Acad. Sci. USA 102, 13517–13520 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    Stets, E. G. et al. Landscape drivers of dynamic change in water quality of US rivers. Environ. Sci. Technol. 54, 4336–4343 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Bird, D. L., Groffman, P. M., Salice, C. J. & Moore, J. Steady-state land cover but non-steady-state major ion chemistry in urban streams. Environ. Sci. Technol. 52, 13015–13026 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Godwin, K., Hafner, S. & Buff, M. Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ. Pollut. 124, 273–281 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streamwater concentration. Environ. Sci. Technol. 42, 410–415 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Overbo, A., Heger, S. & Gulliver, J. Evaluation of chloride contributions from major point and nonpoint sources in a northern U.S. state. Sci. Total Environ. 764, 144179 (2021).

    CAS  Article  Google Scholar 

  11. 11.

    Olson, J. R. Predicting combined effects of land use and climate change on river and stream salinity. Philos. Trans. R. Soc. Lond. B 374, 20180005 (2018).

    Article  CAS  Google Scholar 

  12. 12.

    Corsi, S. R., Cicco, L. A. D., Lutz, M. A. & Hirsch, R. M. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci. Total Environ. 508, 488–497 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Kaushal, S. S. et al. Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. Philos. Trans. R. Soc. Lond. B 374, 20180017 (2018).

    Article  CAS  Google Scholar 

  14. 14.

    Moore, J., Fanelli, R. M. & Sekellick, A. J. High-frequency data reveal deicing salts drive elevated specific conductance and chloride along with pervasive and frequent exceedances of the US Environmental Protection Agency aquatic life criteria for chloride in urban streams. Environ. Sci. Technol. 54, 778–789 (2019).

    Article  CAS  Google Scholar 

  15. 15.

    Löfgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).

    Article  Google Scholar 

  16. 16.

    Daley, M. L., Potter, J. D. & McDowell, W. H. Salinization of urbanizing New Hampshire streams and groundwater: effects of road salt and hydrologic variability. J. North Am. Benthol Soc. 28, 929–940 (2009).

    Article  Google Scholar 

  17. 17.

    Cooper, C. A., Mayer, P. M. & Faulkner, B. R. Effects of road salts on groundwater and surface water dynamics of sodium and chloride in an urban restored stream. Biogeochemistry 121, 149–166 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Snodgrass, J. W. et al. Influence of modern stormwater management practices on transport of road salt to surface waters. Environ. Sci. Technol. 51, 4165–4172 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    International Stormwater BMP Database: 2020 Summary Statistics Project No. 4968 (The Water Research Foundation, 2020).

  20. 20.

    Venkatesan, A. K., Ahmad, S., Johnson, W. & Batista, J. R. Systems dynamic model to forecast salinity load to the Colorado River due to urbanization within the Las Vegas valley. Sci. Total Environ. 409, 2616–2625 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Steele, M. & Aitkenhead-Peterson, J. Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Sci. Total Environ. 409, 3021–3032 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Davies, P. J., Wright, I. A., Jonasson, O. J. & Findlay, S. J. Impact of concrete and PVC pipes on urban water chemistry. Urban Water J. 7, 233–241 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Wright, I. A., Davies, P. J., Findlay, S. J. & Jonasson, O. J. A new type of water pollution: concrete drainage infrastructure and geochemical contamination of urban waters. Mar. Freshw. Res. 62, 1355–1361 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Moore, J., Bird, D. L., Dobbis, S. K. & Woodward, G. Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. Environ. Sci. Technol. Lett. 4, 198–204 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Tippler, C., Wright, I. A., Davies, P. J. & Hanlon, A. The influence of concrete on the geochemical qualities of urban streams. Mar. Freshw. Res. 65, 1009–1017 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    McLennan, S. M. Weathering and global denudation. J. Geol. 101, 295–303 (1993).

    Article  Google Scholar 

  27. 27.

    Wilkinson, B. H. Humans as geologic agents: a deep-time perspective. Geology 33, 161–164 (2005).

    Article  Google Scholar 

  28. 28.

    Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Philos. Trans. R. Soc. Lond. B 374, 20180019 (2018).

    Article  CAS  Google Scholar 

  29. 29.

    Haq, S., Kaushal, S. S. & Duan, S. Episodic salinization and freshwater salinization syndrome mobilize base cations, carbon, and nutrients to streams across urban regions. Biogeochemistry 141, 463–486 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Shanley, J. B. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts. J. Environ. Qual. 23, 977–986 (1994).

    CAS  Article  Google Scholar 

  31. 31.

    Hong, P. K. A. & Macauley, Y. Corrosion and leaching of copper tubing exposed to chlorinated drinking water. Water Air Soil Pollut. 108, 457–471 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    Nguyen, C. K., Stone, K. R. & Edwards, M. A. Chloride-to-sulfate mass ratio: practical studies in galvanic corrosion of lead solder. J. Am. Water Works Assoc. 103, 81–92 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Stets, E., Lee, C., Lytle, D. & Schock, M. Increasing chloride in rivers of the conterminous US and linkages to potential corrosivity and lead action level exceedances in drinking water. Sci. Total Environ. 613-614, 1498–1509 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Dietrich, A. M. & Burlingame, G. A. Critical review and rethinking of USEPA secondary standards for maintaining organoleptic quality of drinking water. Environ. Sci. Technol. 49, 708–720 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Sodium in drinking water. In Guidelines for Drinking-Water Quality 2nd edn, Vol. 2, Health Criteria and Other Supporting Information (World Health Organization, 1996).

  36. 36.

    Drinking Water Advisory: Consumer Acceptability Advice and Health Effects Analysis on Sodium EPA 822-R-03-006 (EPA, 2003).

  37. 37.

    National Research Council Water Reuse: Potential for Expanding the Nation’s Water Supply Through Reuse of Municipal Wastewater (National Academies Press, 2012).

  38. 38.

    Mukherjee, M. & Jensen, O. Making water reuse safe: a comparative analysis of the development of regulation and technology uptake in the US and Australia. Saf. Sci. 121, 5–14 (2020).

    Article  Google Scholar 

  39. 39.

    EPA & CDM Smith 2017 Potable Reuse Compendium (EPA, 2017); https://www.epa.gov/sites/production/files/2018-01/documents/potablereusecompendium_3.pdf

  40. 40.

    Draft National Water Reuse Action Plan (EPA, 2019); https://www.epa.gov/waterreuse/draft-national-water-reuse-action-plan

  41. 41.

    Martin, B. & Via, S. Integrating water reuse into the US water supply portfolio. J. Am. Water Works Assoc. 112, 8–14 (2020).

    Article  Google Scholar 

  42. 42.

    Freshwater: Supply Concerns Continue, and Uncertainties Complicate Planning Technical Report GAO-14-43 (GAO, 2014); https://www.gao.gov/assets/670/663343.pdf

  43. 43.

    Rice, J. & Westerhoff, P. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. Nat. Geosci. 10, 587–591 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Wiener, M. J., Moreno, S., Jafvert, C. T. & Nies, L. F. Time series analysis of water use and indirect reuse within a HUC-4 basin (Wabash) over a nine year period. Sci. Total Environ. 738, 140221 (2020).

    CAS  Article  Google Scholar 

  45. 45.

    Harris-Lovett, S. & Sedlak, D. Protecting the sewershed. Science 369, 1429–1430 (2020).

    CAS  Article  Google Scholar 

  46. 46.

    Falconer, I. R., Chapman, H. F., Moore, M. R. & Ranmuthugala, G. Endocrine-disrupting compounds: a review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 21, 181–191 (2006).

    CAS  Article  Google Scholar 

  47. 47.

    Novotny, E. V., Sander, A. R., Mohseni, O. & Stefan, H. G. Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour. Res. 45, W12410 (2009).

    Article  Google Scholar 

  48. 48.

    Potter, J. D., McDowell, W. H., Helton, A. M. & Daley, M. L. Incorporating urban infrastructure into biogeochemical assessment of urban tropical streams in Puerto Rico. Biogeochemistry 121, 271–286 (2013).

    Article  CAS  Google Scholar 

  49. 49.

    Kaushal, S. S. et al. Longitudinal patterns in carbon and nitrogen fluxes and stream metabolism along an urban watershed continuum. Biogeochemistry 121, 23–44 (2014).

    CAS  Article  Google Scholar 

  50. 50.

    Ambient Water Quality Criteria for Chloride Technical Report EPA 440/5-88-001 (EPA, 1998).

  51. 51.

    Nelsen, R. B. An Introduction to Copulas (Springer-Verlag, 2007).

  52. 52.

    Comprehensive Annual Financial Report (Upper Occoquan Service Authority, 2017); https://www.uosa.org/Documents/0450_012759.pdf

  53. 53.

    Tjandraatmadja, G. et al. Sources of Priority Contaminants in Domestic Wastewater: Contaminant Contribution from Household Products (CSIRO, 2008).

  54. 54.

    Schwabe, K., Nemati, M., Amin, R., Tran, Q. & Jassby, D. Unintended consequences of water conservation on the use of treated municipal wastewater. Nat. Sustain. 3, 628–635 (2020).

    Article  Google Scholar 

  55. 55.

    Cogswell, M. E. et al. Estimated 24-hour urinary sodium and potassium excretion in US adults. JAMA 319, 1209–1220 (2018).

    CAS  Article  Google Scholar 

  56. 56.

    Gleick, P. H. Global freshwater resources: soft-path solutions for the 21st century. Science 302, 1524–1528 (2003).

    CAS  Article  Google Scholar 

  57. 57.

    Grant, S. B. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    Liu, C. et al. Robust slippery liquid-infused porous network surfaces for enhanced anti-icing/deicing performance. ACS Appl. Mater. Interfaces 12, 25471–25477 (2020).

    CAS  Article  Google Scholar 

  59. 59.

    Baldassarre, G. D. et al. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resour. Res. 55, 6327–6355 (2019).

    Article  Google Scholar 

  60. 60.

    Su, J. G. et al. Factors influencing whether children walk to school. Health Place 22, 153–161 (2013).

    Article  Google Scholar 

  61. 61.

    Micron Announces Investment in Its Semiconductor Manufacturing Plant in Manassas, Virginia (Micron Technology, 2018); https://investors.micron.com/node/37386/pdf

  62. 62.

    Lazarova, V., Savoye, P., Janex, M. L., Blatchley, E. R. & Pommepuy, M. Advanced wastewater disinfection technologies: state of the art and perspectives. Water Sci. Technol. 40, 203–213 (1999).

    CAS  Article  Google Scholar 

  63. 63.

    Davis, M. L. Water and Wastewater Engineering: Design Principles and Practice (McGraw-Hill, 2010).

    Google Scholar 

  64. 64.

    Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. Pharmaceuticals as emerging contaminants and their removal from water: a review. Chemosphere 93, 1268–1287 (2013).

    CAS  Article  Google Scholar 

  65. 65.

    Rauch, W. & Kleidorfer, M. Replace contamination, not the pipes. Science 345, 734–735 (2014).

    CAS  Article  Google Scholar 

  66. 66.

    Potts, J. The innovation deficit in public services: the curious problem of too much efficiency and not enough waste and failure. Innovation 11, 34–43 (2009).

    Article  Google Scholar 

  67. 67.

    McKenzie-Mohr, D., Lee, N. R. & Schultz, P. W. Social Marketing to Protect the Environment: What Works (Sage, 2011).

  68. 68.

    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Article  Google Scholar 

  69. 69.

    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  Google Scholar 

  70. 70.

    Appling, A. P., Leon, M. C. & McDowell, W. H. Reducing bias and quantifying uncertainty in watershed flux estimates: the R package loadflex. Ecosphere 6, 269 (2015).

    Article  Google Scholar 

  71. 71.

    Madadgar, S., AghaKouchak, A., Farahmand, A. & Davis, S. J. Probabilistic estimates of drought impacts on agricultural production. Geophys. Res. Lett. 44, 7799–7807 (2017).

    Article  Google Scholar 

  72. 72.

    Sadegh, M., Ragno, E. & AghaKouchak, A. Multivariate copula analysis toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 53, 5166–5183 (2017).

    Article  Google Scholar 

  73. 73.

    Racine, J. & Hyndman, R. Using R to teach econometrics. J. Appl. Econom. 17, 175–189 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by a US National Science Foundation Growing Convergence Research (GCR) Program award to S.B.G., M.A.R., S.K., P.V., M.E., T.A.B. and T.S. (NSF award #2021015) and by a Metropolitan Washington Council of Governments award to S.B.G. and S.K. (contract #21-001). The authors thank the Upper Occoquan Service Authority—in particular, B. Angelotti and M. Noble-Blair—for providing critical data and guidance, H. Zhang at The Water Research Foundation for a national perspective on freshwater salinization, D. Sedlak for valuable comments on the manuscript and participants in the Occoquan Watershed Monitoring Lab’s Freshwater Salinization Workshop held on 14 January 2020.

Author information

Affiliations

Authors

Contributions

S.V.B. and S.B.G. conceived and drafted the article. E.A.P., M.A.R., A.N.G., P.V., A.M.-M., M.E., G.P., N.S. and S.C. contributed text and analysis. All authors contributed edits.

Corresponding author

Correspondence to Stanley B. Grant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Note 1 and Figs. 1–3.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhide, S.V., Grant, S.B., Parker, E.A. et al. Addressing the contribution of indirect potable reuse to inland freshwater salinization. Nat Sustain 4, 699–707 (2021). https://doi.org/10.1038/s41893-021-00713-7

Download citation

Search

Quick links