Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones


The intertidal zone—a transitional boundary between terrestrial and marine environments—has important ecological functions, and receives polycyclic aromatic hydrocarbons (PAHs) from human activities, but how and to what extent anthropogenic factors influence the distribution of PAHs in this important niche remain largely unknown. Here we measured the distribution of United States Environmental Protection Agency priority PAHs in samples of intertidal sediments from across more than 4,500 km of China’s coastline. The total PAH concentrations ranged from 2.3 to 1,031.7 ng g−1 sediment (dry weight) and all PAHs showed positive correlations with total organic carbon (TOC). TOC-normalized high-molecular-weight (HMW) PAH concentrations, but not TOC-normalized low-molecular-weight (LMW) PAHs, were positively correlated with TOC. Moreover, population size and economic development influenced TOC-normalized HMW PAH concentrations, whereas urbanization had a major influence on TOC-normalized LMW PAHs. Human activities also indirectly influenced TOC-normalized PAH concentrations by affecting TOC. In sum, our investigation provides continental-scale evidence that human activities have key and differential effects on the distribution and deposition of PAHs in intertidal sediments, and shows that pollution status and profile of PAHs can be used to index regional industrialization and urbanization status.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sampling sites and PAH concentrations.
Fig. 2: Relationships between PAH concentrations and TOC.
Fig. 3: Distribution of molecular diagnostic ratios and energy consumption.
Fig. 4: Structural equation models showing the direct and indirect effects of TOC, climate factors and anthropogenic factors on TOC-normalized PAH concentrations.

Data availability

The data supporting the findings of this study are summarized in the Supplementary Information, and any other data analysed in the current study are available from the corresponding author upon request.


  1. 1.

    Keith, L. & Telliard, W. Priority pollutants: I-a perspective view. Environ. Sci. Technol. 13, 416–423 (1979).

    Article  Google Scholar 

  2. 2.

    Ravindra, K., Sokhi, R. & Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos. Environ. 42, 2895–2921 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Lang, C., Tao, S., Liu, W. X., Zhang, Y. X. & Simonich, S. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China. Environ. Sci. Technol. 42, 5196–5201 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    Han, D. M. & Currell, M. J. Persistent organic pollutants in China’s surface water systems. Sci. Total Environ. 580, 602–625 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Hamid, N. et al. A review on the abundance, distribution and eco-biological risks of PAHs in the key environmental matrices of South Asia. Rev. Environ. Contam. Toxicol. 240, 1–30 (2017).

    CAS  Google Scholar 

  6. 6.

    Balcioglu, E. B. Potential effects of polycyclic aromatic hydrocarbons (PAHs) in marine foods on human health: a critical review. Toxin Rev. 35, 98–105 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, P. & Chen, Y. G. Polycyclic aromatic hydrocarbons contamination in surface soil of China: a review. Sci. Total Environ. 605, 1011–1020 (2017).

    Article  Google Scholar 

  8. 8.

    Lunde, G. & Bjorseth, A. Polycyclic aromatic-hydrocarbons in long-range transported aerosols. Nature 268, 518–519 (1977).

    CAS  Article  Google Scholar 

  9. 9.

    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).

    Article  Google Scholar 

  10. 10.

    Wamsley, T. V., Cialone, M. A., Smith, J. M., Atkinson, J. H. & Rosati, J. D. The potential of wetlands in reducing storm surge. Ocean Eng. 37, 59–68 (2010).

    Article  Google Scholar 

  11. 11.

    Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Shen, H. Z. et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 47, 6415–6424 (2013).

    Article  Google Scholar 

  14. 14.

    Zhang, Y. X. & Tao, S. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Environ. Pollut. 156, 657–663 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Xu, S. S., Liu, W. X. & Tao, S. Emission of polycyclic aromatic hydrocarbons in China. Environ. Sci. Technol. 40, 702–708 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    Mai, B. X. et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: assessment of input sources and transport pathways using compositional analysis. Environ. Sci. Technol. 37, 4855–4863 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    Liu, L. Y., Wang, J. Z., Wei, G. L., Guan, Y. F. & Zeng, E. Y. Polycyclic aromatic hydrocarbons (PAHs) in continental shelf sediment of China: implications for anthropogenic influences on coastal marine environment. Environ. Pollut. 167, 155–162 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    Ya, M. L. et al. Seasonal variation of terrigenous polycyclic aromatic hydrocarbons along the marginal seas of China: input, phase partitioning, and ocean-current transport. Environ. Sci. Technol. 51, 9072–9079 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Li, X. F. et al. Polycyclic aromatic hydrocarbons and black carbon in intertidal sediments of China coastal zones: concentration, ecological risk, source and their relationship. Sci. Total Environ. 566, 1387–1397 (2016).

    Article  Google Scholar 

  20. 20.

    Keshavarzifard, M., Moore, F., Keshavarzi, B. & Sharifi, R. Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. Environ. Geochem. Health 40, 721–735 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Heywood, E. et al. Factors influencing the national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils. Environ. Sci. Technol. 40, 7629–7635 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    Syed, J. H. et al. Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. Sci. Rep. 7, 2692 (2017).

    Article  Google Scholar 

  23. 23.

    Liu, M. et al. Distribution and sources of polycyclic aromatic hydrocarbons in intertidal flat surface sediments from the Yangtze estuary, China. Environ. Geol. 41, 90–95 (2001).

    CAS  Article  Google Scholar 

  24. 24.

    Maskaoui, K., Zhou, J. L., Hong, H. S. & Zhang, Z. L. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China. Environ. Pollut. 118, 109–122 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Tobiszewski, M. & Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 162, 110–119 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Yunker, M. B. et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 33, 489–515 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, X. L. et al. Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ. Sci. Technol. 39, 9109–9114 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    Katsoyiannis, A., Sweetman, A. J. & Jones, K. C. PAH molecular diagnostic ratios applied to atmospheric sources: a critical evaluation using two decades of source inventory and air concentration data from the UK. Environ. Sci. Technol. 45, 8897–8906 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Larsen, R. K. & Baker, J. E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ. Sci. Technol. 37, 1873–1881 (2003).

    CAS  Article  Google Scholar 

  30. 30.

    Kavouras, I. G. et al. Source apportionment of urban particulate aliphatic and polynuclear aromatic hydrocarbons (PAHs) using multivariate methods. Environ. Sci. Technol. 35, 2288–2294 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    Chen, Y. J. et al. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ. Sci. Technol. 39, 1861–1867 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    Dobbins, R. A., Fletcher, R. A., Benner, B. A. & Hoeft, S. Polycyclic aromatic hydrocarbons in flames, in diesel fuels, an in diesel emissions. Combust. Flame 144, 773–781 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Shi, Z. et al. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nat. Commun. 7, 11973 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 10, 2593–2604 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Grace, J. B. Structural Equation Modelling and Natural Systems (Cambridge Univ. Press, 2006).

Download references


This work was supported by the Basic Special Program of the Ministry of Science and Technology, China (2014FY210600), National Natural Science Foundation of China (41601525, 21677167 and 21976209), the Thousand Young Talents Program of China, Natural Science Foundation of Shandong Province (ZR2016DB07) and the Taishan Scholar Project Special Funding (ts20190962). We thank W. T. Shang, B. Hong and L. M. Liu for their help with data processing.

Author information




L.C., C.L. and D.L. designed the experiments. D.L. and D.W. collected the sediment samples and analysed sediment properties. C.L., M.L. and X.L. performed PAH analysis. M.L. collected anthropogenic and climatic parameters, analysed the data and wrote the original draft. G.Z. and G.J. provided experimental support and revision suggestions. All authors contributed extensively to conducting the experiments and revising the paper.

Corresponding authors

Correspondence to Chunyang Liao or Dongyan Liu or Lingxin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, discussion, Tables 1–17, Figs. 1–7 and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lv, M., Luan, X., Liao, C. et al. Human impacts on polycyclic aromatic hydrocarbon distribution in Chinese intertidal zones. Nat Sustain 3, 878–884 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing