Brazilian maize yields negatively affected by climate after land clearing

Abstract

Over 50% of the Brazilian Cerrado has been cleared, predominantly for agropastoral purposes. Here, we use the Weather Research and Forecasting model to run 15-year climate simulations across Brazil with six land-cover scenarios: (1) before extensive land clearing, (2) observed in 2016, (3) Cerrado replaced with single-cropped (soy) agriculture, (4) Cerrado replaced with double-cropped (soy–maize) agriculture, (5) eastern Amazon replaced with single-cropped agriculture and (6) eastern Amazon replaced with double-cropped agriculture. All land-clearing scenarios (2–6) contain significantly more growing season days with temperatures that exceed critical temperature thresholds for maize. Evaporative fraction significantly decreases across all land-clearing scenarios. Altered weather reduces maize yields between 6% and 8% compared with the before-extensive-land-clearing scenario; however, soy yields were not significantly affected. Our findings provide evidence that land clearing has degraded weather in the Brazilian Cerrado, undermining one of the main reasons for land clearing: rain-fed crop production.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: WRF Model run domain and the six land-cover scenarios.
Fig. 2: Hydrologic seasonal cycles and increases in maize warm nights.
Fig. 3: Number of days above critical temperature threshold across WRF scenarios.
Fig. 4: Decreases in corn yields and increases in maize hot days.

Data availability

The crop-cover dataset is available at https://doi.org/10.7910/DVN/ZFHCTI.

Code availability

NCAR’s WRF Model is freely available for download at http://www2.mmm.ucar.edu/wrf/users/downloads.html.

All modifications made to the WRF Model code are detailed in the main text and Supplementary Information. Code to train and run the crop models can be found at: https://github.com/tpartrid/BrazilCropModel.

References

  1. 1.

    O’Connell, C. S. et al. Balancing tradeoffs: reconciling multiple environmental goals when ecosystem services vary regionally. Environ. Res. Lett. 13, 064008 (2018).

    Article  Google Scholar 

  2. 2.

    Klink, C. A. & Machado, R. B. Conservation of the Brazilian Cerrado. Conserv. Biol. 19, 707–713 (2005).

    Article  Google Scholar 

  3. 3.

    Françoso, R. D. et al. Habitat loss and the effectiveness of protected areas in the Cerrado Biodiversity Hotspot. Nat. Conserv. 13, 35–40 (2015).

    Article  Google Scholar 

  4. 4.

    Oliveira, P. T. S. et al. Trends in water balance components across the Brazilian Cerrado. Water Resour. Res. 50, 7100–7114 (2014).

    Article  Google Scholar 

  5. 5.

    Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).

    Article  Google Scholar 

  6. 6.

    Nóbrega, R. L. B. et al. Effects of conversion of native Cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE 12, e0179414 (2017).

    Article  CAS  Google Scholar 

  7. 7.

    Bustamente, M. M. C., Corbeels, M., Scopel, E. & Roscoe, R. Soil Carbon Storage and Sequestration Potential in the Cerrado Region of Brazil (FAO, 2006).

  8. 8.

    Silvério, D. V. et al. Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environ. Res. Lett. 10, 104015 (2015).

    Article  Google Scholar 

  9. 9.

    Prevedello, J. A., Winck, G. R., Weber, M. M., Nichols, E. & Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14, e0213368 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Butt, N., de Oliveira, P. A. & Costa, M. H. Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil. J. Geophys. Res. Atmos. 116, D1120 (2011).

    Article  Google Scholar 

  11. 11.

    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl Acad. Sci. USA 114, 8481–8486 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Leite‐Filho, A. T., Pontes, V. YdeS. & Costa, M. H. Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos. 124, 5268–5281 (2019).

    Article  Google Scholar 

  13. 13.

    Leite‐Filho, A. T., Costa, M. H. & Fu, R. The southern Amazon rainy season: the role of deforestation and its interactions with large-scale mechanisms. Int. J. Climatol. 40, 2328–2341 (2019).

  14. 14.

    Riskin, S. H. et al. Solute and sediment export from Amazon forest and soybean headwater streams. Ecol. Appl. 27, 193–207 (2017).

    Article  Google Scholar 

  15. 15.

    Dias, L. C. P., Macedo, M. N., Costa, M. H., Coe, M. T. & Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud. 4, 108–122 (2015).

    Article  Google Scholar 

  16. 16.

    Panday, P. K., Coe, M. T., Macedo, M. N., Lefebvre, P. & Castanho, A. DdeA. Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 523, 822–829 (2015).

    Article  Google Scholar 

  17. 17.

    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Phil. Trans. R. Soc. B 363, 1779–1785 (2008).

    Article  Google Scholar 

  18. 18.

    Houghton, R. in Tropical Deforesation and Climate Change (eds Moutinho, P. & Schwartzman, S.) 13–21 (IPAM, 2005).

  19. 19.

    Karstensen, J., Peters, G. P. & Andrew, R. M. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010. Environ. Res. Lett. 8, 024005 (2013).

    Article  CAS  Google Scholar 

  20. 20.

    Lima, L. S. et al. Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services. Landsc. Ecol. 29, 261–274 (2014).

    Article  Google Scholar 

  21. 21.

    World Agricultural Production (USDA, 2019).

  22. 22.

    Brazil: Grain and Feed Annual (USDA FAS, 2019).

  23. 23.

    2017 Censo Agropecuario Tabela 6764 (Instituto Brasileiro de Geographia e Estatistica, 2017).

  24. 24.

    Lee, J.-E. et al. Reduction of tropical land region precipitation variability via transpiration. Geophys. Res. Lett. 39, L19704 (2012).

    Google Scholar 

  25. 25.

    Arima, E. Y., Walker, R. T., Perz, S. & Souza, C. Jr. Explaining the fragmentation in the Brazilian Amazonian forest. J. Land Use Sci. 11, 257–277 (2016).

    Google Scholar 

  26. 26.

    Knox, R., Bisht, G., Wang, J. & Bras, R. Precipitation variability over the forest-to-nonforest transition in southwestern Amazonia. J. Clim. 24, 2368–2377 (2010).

    Article  Google Scholar 

  27. 27.

    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).

    Article  Google Scholar 

  28. 28.

    Oliveira, L. J. C., Costa, M. H., Soares-Filho, B. S. & Coe, M. T. Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environ. Res. Lett. 8, 024021 (2013).

    Article  Google Scholar 

  29. 29.

    Coe, M. et al. The forests of the Amazon and Cerrado moderate regional climate and are the key to the future. Trop. Conserv. Sci. 10, 1–6 (2017).

    Article  Google Scholar 

  30. 30.

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  31. 31.

    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2013).

    Article  Google Scholar 

  32. 32.

    Costa, M. H. & Pires, G. F. Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol. 30, 1970–1979 (2010).

    Article  Google Scholar 

  33. 33.

    Alves, L. M., Marengo, J. A., Fu, R. & Bombardi, R. J. Sensitivity of Amazon regional climate to deforestation. Am. J. Clim. Change 6, 75–98 (2017).

    Article  Google Scholar 

  34. 34.

    Le Page, Y. et al. Synergy between land use and climate change increases future fire risk in Amazon forests. Earth Syst. Dynam. 8, 1237–1246 (2017).

    Article  Google Scholar 

  35. 35.

    Wright, J. S., Fu, R. & Heymsfield, A. J. A statistical analysis of the influence of deep convection on water vapor variability in the tropical upper troposphere. Atmos. Chem. Phys. 9, 5847–5864 (2009).

    CAS  Article  Google Scholar 

  36. 36.

    Malhado, A. C. M., Pires, G. F. & Costa, M. H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio 39, 580–584 (2010).

    Article  Google Scholar 

  37. 37.

    Sampaio, G. et al. Regional Climate Change over eastern Amazonia caused by pasture and soybean cropland expansion. Geophys. Res. Lett. 34, L17709 (2007).

    Article  Google Scholar 

  38. 38.

    Spangler, K. R., Lynch, A. H. & Spera, S. A. Precipitation drivers of cropping frequency in the Brazilian Cerrado: evidence and implications for decision-making. Weather Clim. Soc. 9, 201–213 (2017).

    Article  Google Scholar 

  39. 39.

    Spera, S. A., Winter, J. M. & Chipman, J. W. Evaluation of agricultural land cover representations on regional climate model simulations in the Brazilian Cerrado. J. Geophys. Res. Atmos. 123, 5163–5176 (2018).

    Article  Google Scholar 

  40. 40.

    CONAB. Acompanhamento da safra Brasileira de graos. Cia. Nac. Abast. 6, 1–113 (2019).

  41. 41.

    de Araújo, M. L. S. et al. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 80, 57–67 (2019).

    Article  Google Scholar 

  42. 42.

    Pires, G. F. & Costa, M. H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett. 40, 3618–3623 (2013).

    Article  Google Scholar 

  43. 43.

    Swann, A. L. S., Longo, M., Knox, R. G., Lee, E. & Moorcroft, P. R. Future deforestation in the Amazon and consequences for South American climate. Agric. For. Meteorol. 214–215, 12–24 (2015).

    Article  Google Scholar 

  44. 44.

    Apley, D. W. & Zhu, J. Visualizing the effects of predictor variables in black box supervised learning models. Preprint at https://arxiv.org/abs/1612.08468 (2016).

  45. 45.

    Lobell, D. B. & Burke, M. B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 150, 1443–1452 (2010).

    Article  Google Scholar 

  46. 46.

    Partridge, T. F. et al. Mid-20th century warming hole boosts US maize yields. Environ. Res. Lett. 14, 114008 (2019).

    Article  Google Scholar 

  47. 47.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS  Article  Google Scholar 

  48. 48.

    Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Casado, L. & Londoño, E. Under Brazil’s far-right leader, Amazon protections slashed and forests fall. The New York Times (28 July 2019).

  50. 50.

    Skamarock, C. et al. A Description of the Advanced Research WRF Version 3 Technical Note 475+STR (NCAR, 2008).

  51. 51.

    Niu, G.-Y. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 116, D12109 (2011).

    Article  Google Scholar 

  52. 52.

    Yang, Z.-L. et al. The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J. Geophys. Res. Atmos. 116, D12110 (2011).

    Article  Google Scholar 

  53. 53.

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  54. 54.

    Georgescu, M., Lobell, D. B., Field, C. B. & Mahalov, A. Simulated hydroclimatic impacts of projected Brazilian sugarcane expansion. Geophys. Res. Lett. 40, 972–977 (2013).

    Article  Google Scholar 

  55. 55.

    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Article  Google Scholar 

  56. 56.

    Pei, L. et al. WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States. J. Clim. 27, 7703–7724 (2014).

    Article  Google Scholar 

  57. 57.

    Massey, J. D., Steenburgh, W. J., Knievel, J. C. & Cheng, W. Y. Y. Regional soil moisture biases and their influence on WRF model temperature forecasts over the Intermountain West. Weather Forecast. 31, 197–216 (2015).

    Article  Google Scholar 

  58. 58.

    Cuntz, M. et al. The impact of standard and hard-coded parameters on the hydrologic fluxes in the Noah-MP land surface model. J. Geophys. Res. Atmos. 121, 10676–10700 (2016).

    Article  Google Scholar 

  59. 59.

    MapBiomas Project—Collection 3.1 of the Annual Land Use Land Cover Maps of Brazil (MapBiomas, accessed 18 January 2017).

  60. 60.

    PRODES—Projeto de Monitoramento do Desmatamento na Amazônia Brasileira por Satélite [Monitoring Deforestation in the Brazilian Amazon by Satelite Project] (INPE, 2019).

  61. 61.

    Monitoramento Sistemático dos Desmatamentos no Bioma Cerrado (SIAD-Cerrado) (LAPIG, 2019).

  62. 62.

    Spera, S. Agricultural Intensification can preserve the Brazilian Cerrado: applying lessons from Mato Grosso and Goiás to Brazil’s last agricultural frontier. Trop. Conserv. Sci. 10, 1–7 (2017).

    Article  Google Scholar 

  63. 63.

    Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. 12, e12671 (2019).

    Article  Google Scholar 

  64. 64.

    Morton, D. C. et al. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Glob. Environ. Change 37, 92–101 (2016).

    Article  Google Scholar 

  65. 65.

    Garrett, R. D. & Rausch, L. L. Green for gold: social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant Stud. 43, 461–493 (2016).

    Article  Google Scholar 

  66. 66.

    Cohn, A. S. et al. Forest loss in Brazil increases maximum temperatures within 50 km. Environ. Res. Lett. 14, 084047 (2019).

    Article  Google Scholar 

  67. 67.

    Sauer, S. Soy expansion into the agricultural frontiers of the Brazilian Amazon: the agribusiness economy and its social and environmental conflicts. Land Use Policy 79, 326–338 (2018).

    Article  Google Scholar 

  68. 68.

    Jepson, W., Brannstrom, C. & Filippi, A. Access regimes and regional land change in the Brazilian Cerrado, 1972–2002. Ann. Assoc. Am. Geogr. 100, 87–111 (2010).

    Article  Google Scholar 

  69. 69.

    Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Calendário de Plantio e Colheita de Grãos no Brasil 2019 (Companhia Nacional de Abastecimento, 2019).

  71. 71.

    Filho, I. A. P. in Embrapa Milho e Sorgo 9th edn (Embrapa, 2015).

  72. 72.

    Tecnologias de Produção de Soja—Região Central do Brasil 2014 (Embrapa Soja, 2014).

  73. 73.

    Sibaldelli, R. N. R. & Farias, J. R. B. Boletim Agrometeorológico da Embrapa Soja (Embrapa Soja, 2016).

  74. 74.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    CAS  Article  Google Scholar 

  75. 75.

    Ferreira, D. B. & Rao, V. B. Recent climate variability and its impacts on soybean yields in southern Brazil. Theor. Appl. Climatol. 105, 83–97 (2011).

    Article  Google Scholar 

  76. 76.

    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25, 2006 (2011).

    Article  CAS  Google Scholar 

  77. 77.

    Viana, J. S., Gonçalves, E. P., Silva, A. C. & Matos, V. P. in A Comprehensive Survey of International Soybean Researach—Genetics, Physiology, Agronomy and Nitrogen Relationships (ed. Board, J.) Ch. 18 (IntechOpen, 2013).

  78. 78.

    Caratti, F. C., Lamego, F. P., Silva, J. D. G., Garcia, J. R. & Agostinetto, D. Partição da competição por recursos entre soja e milho como planta competidora. Planta Daninha 34, 657–666 (2016).

    Article  Google Scholar 

  79. 79.

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  80. 80.

    Butler, E., Mueller, N. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 201808035 (2018).

    Article  CAS  Google Scholar 

  81. 81.

    Everingham, Y., Sexton, J., Skocaj, D. & Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 27 (2016).

    Article  Google Scholar 

  82. 82.

    2018 Producao Agricola Municpal Tabela 839 (Instituto Brasileiro de Geographia e Estatistica, 2019).

  83. 83.

    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).

    Article  Google Scholar 

  84. 84.

    Teixeira, E. I., Fischer, G., van Velthuizen, H., Walter, C. & Ewert, F. Global hot-spots of heat stress on agricultural crops due to climate change. Agric. For. Meteorol. 170, 206–215 (2013).

    Article  Google Scholar 

  85. 85.

    Salem, M. A., Kakani, V. G., Koti, S. & Reddy, K. R. Pollen-based screening of soybean genotypes for high temperatures. Crop Sci. 47, 219–231 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Neukom Institute for Computational Science at Dartmouth College, United States Department of Agriculture National Institute of Food and Agriculture (2015‐68007‐23133 and 2018-67003-27406), National Science Foundation (BCS 184018) and Nelson A. Rockefeller Center at Dartmouth College. We thank Research Computing at Dartmouth College for their assistance with compiling and running WRF.

Author information

Affiliations

Authors

Contributions

S.A.S., J.M.W. and T.F.P. conceived and designed the experiments. S.A.S. performed the climate modelling experiments, and T.F.P. performed yield analyses. S.A.S, J.M.W. and T.F.P. analysed the data. S.A.S. wrote the manuscript with contributions from J.M.W. and T.F.P.

Corresponding author

Correspondence to Stephanie A. Spera.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Monthly average minimum and maximum temperatures.

Seasonal cycles of a, minimum temperature and b, maximum temperature spatially averaged over the whole region of interest (white box in Fig. 1a). The solid lines represent mean monthly values, and the shaded area represents bootstrapped 95% confidence intervals.

Extended Data Fig. 2 Differences in annual and September-October-November evapotranspiration across scenarios.

Estimation plots of a, annual evapotranspiration and b, September, October, and November evapotranspiration. Each point in the scatter plot represents the spatial average over the whole region of interest for the 15 (2001 – 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size (bottom). Note CeAzOg = BzBLC in main text. ‘Mean difference’ refers to a difference (mm) in distribution means.

Extended Data Fig. 3 Differences in number of days above critical growing season temperature maize thresholds across the Mato Grosso sub-region.

Estimation plots of the number of days in the corn growing season (Jan – Aug) with minimum temperatures above 24 °C (left) and maximum temperatures above 35 °C (right). Each point in the scatter plot represents the spatial average over the Mato Grosso Amazon-boundary sub-region for the 15 (2001 – 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size (bottom). Note CeAzOg = BzBLC in main text. ‘Mean difference’ refers to a difference (number of days) in distribution means.

Extended Data Fig. 4 Differences in start and end of rainy season across scenarios.

Estimation plots of the start of the rainy season (left) and end of the rainy season (right), both defined as the number days after Aug 1. Each point in the scatter plot represents the spatial average over the whole region of interest for the 15 (2001 – 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size (bottom). Note CeAzOg = BzBLC in main text. ‘Mean difference’ refers to a difference (number of days after Aug 1) in distribution means.

Extended Data Fig. 5 Seasonal maps of average precipitation change between BzBLC and AzSc and AzDC scenarios.

Seasonal maps of the average precipitation change, in percent, between AzSC and BzBLC scenarios (left) and AzDC and BzBLC scenarios (right) between 2001-2015 harvest years in each grid cell. Stippled areas highlight where the percent change is greater than 95% of the variance of BzBLC precipitation between 2001-2015 in each grid cell.

Extended Data Fig. 6 Difference in September-October precipitation across scenarios.

Estimation plots of September-October precipitation (mm). Scatterplots of each land-cover scenarios for each year (top) and bootstrapped 95% confidence intervals of the effect size (bottom). Each point in the scatter plots represents the spatial average over the whole region for the 15 (2001-2015) harvest years (top), with bootstrapped 95% confidence intervals of effect size (bottom). Note CeAzOg = BzBLC in main text. ‘Mean difference’ refers to a difference (mm) in distribution means.

Extended Data Fig. 7 Difference in annual and September-October precipitation across scenarios across the Tocantins sub-region.

Estimation plots of a, annual precipitation and b, September-October precipitation in the Tocantins sub-region. Each point in the scatter plot represents the spatial average over the Tocantins sub-region for the 15 (2001 – 2015) harvest years (top), with bootstrapped 95% confidence intervals of the effect size (bottom). ‘Mean difference’ refers to a difference (mm) in distribution means.

Extended Data Fig. 8

Left: Violin plots of the percent difference between predicted maize yield the original land use scenario (BzBLC) and each of the counterfactual climate scenarios. Right: Estimation plot of corn yields (kg/ha). Scatterplots of each land-cover scenarios (top) and bootstrapped 95% confidence intervals of the effect size (bottom).

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–4 and Figs. 1–49.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spera, S.A., Winter, J.M. & Partridge, T.F. Brazilian maize yields negatively affected by climate after land clearing. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-0560-3

Download citation