Sustainable commoditization of seafood

Abstract

Debates on seafood in the Global South tend to prioritize food security, whereas debates on seafood in the Global North emphasize sustainability. We track the evolution of both debates and propose the concept of ‘sustainable commoditization’ to reconcile them. We identify three pillars of action that are necessary for sustainable commoditization of seafood in the Global South, namely: (1) sustainable intensification; (2) supply chain transformation; and (3) supporting policy and regulation. We believe that the concept of ‘sustainable commoditization’ is applicable well beyond the seafood sector and is especially relevant for agriculture and forestry more generally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The triangle of sustainable commoditization.

References

  1. 1.

    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).

    CAS  Article  Google Scholar 

  2. 2.

    Golden, C. et al. Fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    Article  Google Scholar 

  3. 3.

    Funge‐Smith, S. & Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish. 20, 1176–1195 (2019).

    Article  Google Scholar 

  4. 4.

    Troell, M. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  6. 6.

    Bush, S. R. et al. Certify sustainable aquaculture? Science 341, 1067–1068 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Little, D. C. et al. Sustainable intensification of aquaculture value chains between Asia and Europe: a framework for understanding impacts and challenges. Aquaculture 493, 338–354 (2018).

    Article  Google Scholar 

  8. 8.

    Henriksson, P. J. G., Belton, B., Jahan, K. M. & Rico, A. Measuring the potential for sustainable intensification of aquaculture in Bangladesh using Life Cycle Assessment. Proc. Natl Acad. Sci. USA 115, 2958–2963 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Godfray, H. C. J. & Garnett, T. Food security and sustainable intensification. Phil. Trans. R. Soc. B 369, 20120273 (2014).

    Article  Google Scholar 

  10. 10.

    Vernon, R. The product cycle hypothesis in a new international environment. Oxf. Bull. Econ. Stat. 41, 255–267 (1979).

    Article  Google Scholar 

  11. 11.

    Reardon, T. et al. Rapid transformation of food systems in developing regions: highlighting the role of agricultural research & innovations. Agric. Syst. 172, 47–59 (2019).

    Article  Google Scholar 

  12. 12.

    Belton, B., Bush, S. R. & Little, D. C. Not just for the wealthy: rethinking farmed fish consumption in the Global South. Glob. Food Secur. 16, 85–92 (2018).

    Article  Google Scholar 

  13. 13.

    Bush, S. R. & Oosterveer, P. Governing Sustainable Seafood (Routledge, 2019).

  14. 14.

    Ponte, S., Kelling, I., Jespersen, K. S. & Kruijssen, F. The Blue Revolution in Asia: upgrading and governance in aquaculture value chains. World Dev. 64, 52–64 (2014).

    Article  Google Scholar 

  15. 15.

    Little, D. C. et al. Whitefish wars: Pangasius, politics and consumer confusion in Europe. Mar. Policy 36, 738–745 (2012).

    Article  Google Scholar 

  16. 16.

    Pitcher, T. J. & Lam, M. E. Fish commoditization and the historical origins of catching fish for profit. Marit. Stud. 14, 2 (2015).

    Article  Google Scholar 

  17. 17.

    Bavinck, M. in Engineering Earth: The Impacts of Megaengineering Projects (ed. Brunn, S. D.) 257–274 (Springer, 2011).

  18. 18.

    Holm, P. World War II and the “Great Acceleration” of North Atlantic fisheries. Glob. Environ. 5, 66–91 (2012).

    Article  Google Scholar 

  19. 19.

    Kurlansky, M. Cod: A Biography of the Fish that Changed the World (Penguin Books, 1998).

  20. 20.

    Josephson, P. R. The Ocean’s Hot Dog: the development of the fish stick. Technol. Cult. 49, 41–61 (2008).

    Article  Google Scholar 

  21. 21.

    Mansfield, B. in Global Political Ecology (eds Peet, R. et al.) 84–99 (Routledge, 2011).

  22. 22.

    Bailey, C. The political economy of fisheries development in the third world. Agric. Hum. Values 5, 35–48 (1988).

    Article  Google Scholar 

  23. 23.

    McDorman, T. L. The 1991 U.S.-Mexico GATT Panel Report on Tuna and Dolphin: implications for trade and environment conflicts. North Carolina J. Int. Law Commercial Regulation 17, 461–488 (1992).

    Google Scholar 

  24. 24.

    Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, T. Fishing down marine food webs. Science 279, 860–863 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: consequences for recovery and extinction risk. BioScience 54, 297–309 (2004).

    Article  Google Scholar 

  27. 27.

    Pusceddu, A. et al. Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 111, 8816–8866 (2014).

    Article  CAS  Google Scholar 

  28. 28.

    Hilborn, R. et al. Institutions, incentives and the future of fisheries. Phil. Trans. R. Soc. B 360, 47–57 (2005).

    Article  Google Scholar 

  29. 29.

    Reardon, T. & Timmer, P. C. The economics of the food system revolution. Annu. Rev. Resour. Econ. 4, 225–264 (2012).

    Article  Google Scholar 

  30. 30.

    Alder, J. & Sumaila, U. R. Western Africa: a fish basket of Europe past and present. J. Environ. Dev. 13, 156–178 (2004).

    Google Scholar 

  31. 31.

    Petersen, L. Governance of the South Pacific Tuna Fishery. Pac. Econ. Bull. 16, 63–76 (2001).

    Google Scholar 

  32. 32.

    Swartz, W., Sumaila, U. R., Watson, R. & Pauly, D. Sourcing seafood for the three major markets: the EU, Japan and the USA. Mar. Policy. 34, 1366–1373 (2010).

    Article  Google Scholar 

  33. 33.

    Asche, F. & Smith, M. D. Viewpoint: induced innovation in fisheries and aquaculture. Food Policy 76, 1–7 (2018).

    Article  Google Scholar 

  34. 34.

    Stickney, R. R. & Treece, G. D. in Aquaculture Production Systems (ed. Tidwell, J. H.) 15–50 (Wiley Blackwell, 2012).

  35. 35.

    Hall, D. Explaining the diversity of Southeast Asian shrimp aquaculture. J. Agrar. Change 4, 315–335 (2004).

    Article  Google Scholar 

  36. 36.

    Belton, B. & Little, D. C. Immanent and interventionist inland Asian aquaculture development and its outcomes. Dev. Policy Rev. 29, 459–484 (2011).

    Article  Google Scholar 

  37. 37.

    Bush, S., Belton, B., Little, D. C. & Islam, M. S. Emerging trends in aquaculture value chain research. Aquaculture 498, 428–434 (2019).

    Article  Google Scholar 

  38. 38.

    Hernandez, R. et al. The “Quiet Revolution” in the aquaculture value chain in Bangladesh. Aquaculture 493, 456–468 (2018).

    Article  Google Scholar 

  39. 39.

    Popkin, B. M. & Reardon, T. Obesity and the food system transformation in Latin America. Obes. Rev. 19, 1028–1064 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Daw, T. & Gray, T. Fisheries science and sustainability in international policy: a study of failure in the European Union’s Common Fisheries Policy. Mar. Policy 29, 189–197 (2005).

    Article  Google Scholar 

  41. 41.

    Asche, F. et al. Three pillars of sustainability in fisheries. Proc. Natl Acad. Sci. USA 115, 11221–11225 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Council Regulation (EC) No 1005/2008 of 29 September 2008 establishing a Community system to prevent, deter and eliminate illegal, unreported and unregulated fishing (European Commission, 2008); https://go.nature.com/2VTT6iS

  43. 43.

    Marschke, M. & Vandergeest, P. Slavery scandals: unpacking labour challenges and policy responses within the off-shore fisheries sector. Mar. Policy 68, 39–46 (2016).

    Article  Google Scholar 

  44. 44.

    Naylor, R. L. et al. Nature’s subsidies to shrimp and salmon farming. Science 282, 883–884 (1998).

    CAS  Article  Google Scholar 

  45. 45.

    Naylor, R. L. et al. Effect of aquaculture on world fish supplies. Nature 405, 1017–1024 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    Barbier, E. B. Valuing the environment as input: review of applications to mangrove-fishery linkages. Ecol. Econ. 35, 47–61 (2000).

    Article  Google Scholar 

  47. 47.

    Krkosek, M., Lewis, M. A., Morton, A., Frazer, N. L. & Volpe, J. P. Epizootics of wild fish induced by farm fish. Proc. Natl Acad. Sci. USA 103, 15506–15510 (2006).

    CAS  Article  Google Scholar 

  48. 48.

    Ford, J. S. & Myers, R. A. A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biol. 6, e33 (2008).

    Article  CAS  Google Scholar 

  49. 49.

    De Silva, S. S., Nguyen, T. T. T., Turchini, G. M., Amarasinghe, U. S. & Abery, N. W. Alien species in aquaculture and biodiversity: a paradox in food production. Ambio 38, 24–29 (2009).

    Article  Google Scholar 

  50. 50.

    Naylor, R. et al. Fugitive salmon: assessing risks from aquaculture escapes. BioScience 55, 427–437 (2005).

    Article  Google Scholar 

  51. 51.

    Cabello, F. C. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8, 1137–1144 (2006).

    CAS  Article  Google Scholar 

  52. 52.

    Anh, P. T., Kroeze, C., Bush, S. R. & Mol, A. P. J. Water pollution by intensive brackish shrimp farming in south-east Vietnam: causes and option for control. Agric. Water Manage. 97, 872–882 (2010).

    Article  Google Scholar 

  53. 53.

    Naylor, R. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009).

    CAS  Article  Google Scholar 

  54. 54.

    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Article  Google Scholar 

  55. 55.

    Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N. & Uchida, H. Evolution and future of the sustainable seafood market. Nat. Sustain. 1, 392–398 (2018).

    Article  Google Scholar 

  56. 56.

    Jacquet, J. et al. Seafood stewardship in crisis. Nature 467, 28–29 (2010).

    CAS  Article  Google Scholar 

  57. 57.

    Swinnen, J., Deconinck, K., Vandemoortele, T. & Vandeplas, A. Quality Standards, Value Chains, and International Development: Economic and Political Theory (Cambridge Univ. Press, 2015).

  58. 58.

    Bush, S. R. et al. Inclusive environmental performance through ‘beyond-farm’ aquaculture governance. Curr. Opin. Environ. Sustain. 41, 49–55 (2019).

    Google Scholar 

  59. 59.

    Waite, R. et al. Improving Productivity and Environmental Performance of Aquaculture Working Paper, Installment 5 of Creating a Sustainable Food Future (World Resources Institute, 2014).

  60. 60.

    Wang, Z., Mao, Y. & Gale, F. Chinese consumer demand for food safety attributes in milk products. Food Policy 33, 27–36 (2008).

    CAS  Article  Google Scholar 

  61. 61.

    Wang, Q. et al. Paradigm changes in freshwater aquaculture practices in China: moving towards achieving environmental integrity and sustainability. Ambio 47, 410–426 (2017).

    Google Scholar 

  62. 62.

    Samerwong, P. et al. Implications of multiple national certification schemes for shrimp aquaculture in Thailand. Aquaculture 493, 319–327 (2018).

    Article  Google Scholar 

  63. 63.

    Kobayashi, M. et al. Fish to 2030: the role and opportunity for aquaculture. Aquacult. Econ. Manag. 19, 282–300 (2015).

    Article  Google Scholar 

  64. 64.

    Traub, L., Yeboah, F. K., Meyer, F. & Jayne, T. S. in Beyond a Middle Income Africa: Transforming African economies for sustained growth with rising employment and incomes ReSAKSS Annual Trends and Outlook Report (eds Badiane, O. & Makombe, T.) Ch. 3 (International Food Policy Research Institute (IFPRI), 2015).

  65. 65.

    Stern, D. I. The rise and fall of the environmental Kuznets Curve. World Dev. 32, 1419–1439 (2004).

    Article  Google Scholar 

  66. 66.

    Bush, S. R. et al. in Routledge Handbook of Southeast Asian Development (eds McGregor, A. et al.) 316–329 (Routledge, 2018).

  67. 67.

    Doumbouya, A. et al. Assessing the effectiveness of monitoring control and surveillance of illegal fishing: the case of West Africa. Front. Mar. Sci. 4, 50 (2017).

    Article  Google Scholar 

  68. 68.

    O’Neill, F. G. et al. in The European Landing Obligation (eds Uhlmann, S. S. et al.) 279–296 (Springer Open, 2019).

  69. 69.

    Voluntary Guidelines for Securing Sustainable Small-Scale Fisheries in the Context of Food Security and Poverty Eradication (Food and Agriculture Organization of the United Nations, 2015).

  70. 70.

    Jardine, S. L., Lin, C.-Y. C. & Sanchirico, J. N. Measuring benefits from a marketing cooperative in the Copper River Fishery. Am. J. Agric. Econ. 96, 1084–1101 (2014).

    Article  Google Scholar 

  71. 71.

    McGrath, K. P., Pelletier, N. L. & Tyedmers, P. H. Life cycle assessment of a novel closed-containment salmon aquaculture technology. Environ. Sci. Technol. 49, 5628–5636 (2015).

    CAS  Article  Google Scholar 

  72. 72.

    Teletchea, F. & Fontaine, P. Levels of domestication in fish: implications for the sustainable future of aquaculture. Fish Fish. 15, 181–195 (2012).

    Article  Google Scholar 

  73. 73.

    Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).

    Article  Google Scholar 

  74. 74.

    Gratacap, R. L., Wargelius, A., Edvardsen, R. B. & Houston, R. D. Potential of genome editing to improve aquaculture breeding and production. Trends Genet. 35, 672–684 (2019).

    CAS  Article  Google Scholar 

  75. 75.

    Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Article  Google Scholar 

  76. 76.

    Ytresøyl, T., Synnøve, T. & Asgard, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448, 365–374 (2015).

    Article  Google Scholar 

  77. 77.

    Malcorps, W. et al. The sustainability conundrum of fishmeal substitution by plant ingredients in shrimp feeds. Sustainability 11, 1212 (2019).

    Article  Google Scholar 

  78. 78.

    Føre, M. et al. Precision fish farming: a new framework to improve production in aquaculture. Biosyst. Eng. 173, 176–193 (2018).

    Article  Google Scholar 

  79. 79.

    Belton, B. et al. The emerging “Quiet Revolution” in Myanmar’s aquaculture value chain. Aquaculture 493, 384–394 (2018).

    Article  Google Scholar 

  80. 80.

    Gona, A. et al. The Rapid Transformation of the Fish Value Chain in Nigeria: Evidence from Kebbi State FSP Research Paper 115 (Michigan State University: Feed the Future Innovation Lab for Food Security Policy, 2018).

  81. 81.

    Africa Agriculture Status Report: The Hidden Middle: A Quiet Revolution in the Private Sector Driving Agricultural Transformation. Nairobi, Kenya: Alliance for a Green Revolution in Africa (AGRA, 2019).

  82. 82.

    Vandergeest, P. Certification and communities: alternatives for regulating the environmental and social impacts of shrimp farming. World Dev. 35, 1152–1171 (2007).

    Article  Google Scholar 

  83. 83.

    Wakamatsu, M. & Wakamatsu, H. The certification of small-scale fisheries. Mar. Policy 77, 97–103 (2017).

    Article  Google Scholar 

  84. 84.

    Lecomte, M., Rochette, J., Lapayre, R. & Lauranns, Y. Tuna: Fish and fisheries, markets and sustainability (Développement Durable & Relations Internationales, 2017).

  85. 85.

    Thai Union Annual Report 2018 (Thai Union Group Public Company Limited, 2018).

  86. 86.

    Washington, S. & Ababouch, L. Private Standards and Certification in Fisheries and Aquaculture: Current Practice and Emerging Issues FAO Fisheries and Aquaculture Technical Paper No. 553 (Food and Agriculture Organization of the United Nations, 2011).

  87. 87.

    Vogel, D. Trading Up: Consumer and Environmental Regulation in a Global Economy (Harvard Univ. Press, 1995).

  88. 88.

    Hosch, G. & Blaha, F. Seafood Traceability for Fisheries Compliance: Country Level Support for Catch Documentation Schemes FAO Fisheries and Aquaculture Technical Paper 619 (Food and Agriculture Organization of the United Nations, 2017).

  89. 89.

    Sun, Y. & van der Ven, H. Swimming in their own direction: explaining domestic variation in homegrown sustainability governance for aquaculture in Asia. Ecol. Econ. 167, 106445 (2020).

    Article  Google Scholar 

  90. 90.

    Zilberman, D. The economics of sustainable development. Am. J. Agric. Econ. 96, 385–396 (2013).

    Article  Google Scholar 

  91. 91.

    Asche, F., Guttormsen, A. G. & Tveterås, R. Environmental problems, productivity and innovations in Norwegian salmon aquaculture. Aquacult. Econ. Manag. 3, 19–29 (1999).

    Article  Google Scholar 

  92. 92.

    Callaway, E. CRISPR plants now subject to tough GM laws in European Union. Nature 560, 16 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    Newton, R., Telfer, T. & Little, D. C. Perspectives on the utilisation of aquaculture coproduct in Europe and Asia: prospects for value addition and improved resource efficiency. Crit. Rev. Food Sci. Nutr. 54, 495–510 (2014).

    Article  Google Scholar 

  94. 94.

    Zilberman, D., Lu, L. & Reardon, T. Innovation-induced food supply chain design. Food Policy 83, 289–297 (2019).

    Article  Google Scholar 

  95. 95.

    Schmithüsen, F. J. Multifunctional forestry practices as a land use strategy to meet increasing private and public demands in modern societies. J. For. Sci. 53, 290–298 (2007).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

B.B., T.R. and D.Z. designed the research. B.B. and T.R. performed the research. B.B., T.R. and D.Z. wrote the paper.

Corresponding author

Correspondence to Thomas Reardon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belton, B., Reardon, T. & Zilberman, D. Sustainable commoditization of seafood. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-0540-7

Download citation

Further reading