Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Corncob cellulose nanosphere as an eco-friendly detergent

Abstract

The daily use of synthetic detergents at a global scale is responsible for substantial environmental impacts but managerial and policy strategies to address them are largely inadequate. More sustainable and eco-friendly detergents are an appealing solution to reduce environmental impacts. Here, we developed a detergent based on cellulose nanospheres (CNSs) from agricultural waste corncob, an overlooked abundant and cheap natural source that is often discarded. Compared with conventional surfactants, CNSs stabilize at oil–water interfaces and form Pickering emulsions with enhanced stability and antiredeposition properties. CNSs show higher cleaning efficiency in removing stains from various surfaces compared with powder and liquid commercial detergents. In contrast to high toxicity of commercial detergents, CNSs are non-toxic to several mammalian cell lines, zebrafish and hydroponic lettuce. Overall, our results demonstrated the feasibility of using agriculturally derived waste CNSs as a safer, more cost-effective and sustainable alternative to commercial synthetic detergents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of CNSs and CNSs-stabilized Pickering emulsion.
Fig. 2: The oil de-wetting mechanism of CNSs.
Fig. 3: Cleaning capacity of DO50 compared with DWL for removing different stains from various fabrics by ultrasonic cleaner.
Fig. 4: Cleaning capacity of CNS formulation for removing stains from cotton fabrics using a Tergotometer.
Fig. 5: Toxicity studies of DO50 compared with DWL and LP.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Correspondence and requests for materials should be addressed to Y.L. Source Data for Figs. 4b, 5a and 5d are provided as Source Data files.

References

  1. Laundry Detergent Market Analysis by Product (Powder, Liquid, Fabric Softeners, Detergent Tablets), by Application (Household, Industrial or Institutional), by Region, and Segment Forecasts, 2018–2025 (Grand View Research, 2017); https://go.nature.com/3aH1aJy

  2. Güven, K. C., Çetintürk, K., Alpaslan, M. & Tekinay, A. A. Oil and detergent pollution of sea water in Dardanelles in 2001–2002. Turkish J. Mar. Sci. 8, 121–130 (2002).

    Google Scholar 

  3. Qureshi, S. T., Soomro, A. G., Bux, H. & Yasmeen, A. Genotoxic and carcinogenic effects of house hold detergents using chromosomal aberration assay in chickpea (Cicer arietinum L.) root tip cells. World Appl. Sci. J. 32, 1381–1387 (2014).

    CAS  Google Scholar 

  4. Valdez, A. L. et al. Pediatric exposure to laundry detergent pods. Pediatrics 134, 1127–1135 (2014).

    Article  Google Scholar 

  5. Mehta, P. S. & Bhatt, K. C. Traditional soap and detergent yielding plants of Uttaranchal. Indian J. Tradit. Know. 6, 279–284 (2007).

    Google Scholar 

  6. Gong, W. et al. Optimization of saponin extraction conditions with Camellia sinensis var. assamica seed and its application for natural detergent. J. Sci. Food Agric. 98, 2312–2319 (2018).

    Article  CAS  Google Scholar 

  7. Tripodo, G. & Mandracchia, D. Inulin as a multifaceted (active) substance and its chemical functionalization: from plant extraction to applications in pharmacy, cosmetics and food. Eur. J. Pharm. Biopharm. 141, 21–36 (2019).

    Article  CAS  Google Scholar 

  8. Ja’afar, S. M., Khalid, R. M., Othaman, R., Mokhtar, W. N. A. W. & Ramli, S. Coconut oil based microemulsion formulations for hair care product application. Sains Malays. 48, 599–605 (2019).

    Article  CAS  Google Scholar 

  9. Gautam, K. K. & Tyagi, V. K. Microbial surfactants: a review. J. Oleo Sci. 55, 155–166 (2006).

    Article  CAS  Google Scholar 

  10. Jensen, N. E. Severe dermatitis and “biological” detergents. Br. Med. J. 1, 299 (1970).

    Article  CAS  Google Scholar 

  11. Cortez, J., Bonner, P. L. R. & Griffin, M. Transglutaminase treatment of wool fabrics leads to resistance to detergent damage. J. Biotechnol. 116, 379–386 (2005).

    Article  CAS  Google Scholar 

  12. Berton-Carabin, C. C. & Schroen, K. Pickering emulsions for food applications: background, trends, and challenges. Annu. Rev. Food Sci. Technol. 6, 263–297 (2015).

    Article  CAS  Google Scholar 

  13. Mohammed, N., Grishkewich, N. & Tam, K. C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ. Sci. Nano 5, 623–658 (2018).

    Article  CAS  Google Scholar 

  14. Capron, I. & Cathala, B. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals. Biomacromolecules 14, 291–296 (2013).

    Article  CAS  Google Scholar 

  15. Hu, S. et al. Improved properties and drug delivery behaviors of electrospun cellulose acetate nanofibrous membranes by introducing carboxylated cellulose nanocrystals. Cellulose 25, 1883–1898 (2018).

    Article  CAS  Google Scholar 

  16. Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8, 2485–2491 (2007).

    Article  CAS  Google Scholar 

  17. Satyamurthy, P. & Vigneshwaran, N. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym. Microb. Technol. 52, 20–25 (2013).

    Article  CAS  Google Scholar 

  18. Cheng, M. et al. Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J. Mater. Chem. A 2, 251–258 (2014).

    Article  CAS  Google Scholar 

  19. Yan, C. F., Yu, H. Y. & Yao, J. M. One-step extraction and functionalization of cellulose nanospheres from lyocell fibers with cellulose ii crystal structure. Cellulose 22, 3773–3788 (2015).

    Article  CAS  Google Scholar 

  20. Zhang, Z. et al. Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization. J. Colloid Interface Sci. 555, 489–497 (2019).

    Article  CAS  Google Scholar 

  21. Ye, S., Yu, H. Y., Wang, D., Zhu, J. Y. & Gu, J. P. Green acid-free one-step hydrothermal ammonium persulfate oxidation of viscose fiber wastes to obtain carboxylated spherical cellulose nanocrystals for oil/water Pickering emulsion. Cellulose 25, 5139–5155 (2018).

    Article  CAS  Google Scholar 

  22. Guan, Y. et al. Green one-step synthesis of ZnO/cellulose nanocrystal hybrids with modulated morphologies and superfast absorption of cationic dyes. Int. J. Biol. Macromol. 132, 51–62 (2019).

    Article  CAS  Google Scholar 

  23. Qu, W. H., Xu, Y. Y., Lu, A. H., Zhang, X. Q. & Li, W. C. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresour. Technol. 189, 285–291 (2015).

    Article  CAS  Google Scholar 

  24. Cao, Q., Xie, K. C., Bao, W. R. & Shen, S. G. Pyrolytic behavior of waste corn cob. Bioresour. Technol. 94, 83–89 (2004).

    Article  CAS  Google Scholar 

  25. Medronho, B., Romano, A., Miguel, M. G., Stigsson, L. & Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012).

    Article  CAS  Google Scholar 

  26. Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 42, 3941–3994 (2011).

    Article  CAS  Google Scholar 

  27. Habibi, Y., Chanzy, H. & Vignon, M. R. TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13, 679–687 (2006).

    Article  CAS  Google Scholar 

  28. Braun, B. & Dorgan, J. R. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10, 334–341 (2009).

    Article  CAS  Google Scholar 

  29. Okita, Y., Saito, T. & Isogai, A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11, 1696–1700 (2010).

    Article  CAS  Google Scholar 

  30. Yu, H. Y. et al. From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces 9, 43920–43938 (2017).

    Article  CAS  Google Scholar 

  31. Tanaka, M., Matsuno, R. & Converse, A. O. n-Butylamine and acid-steam explosion pretreatments of rice straw and hardwood: effects on substrate structure and enzymatic hydrolysis. Enzym. Microb. Technol. 12, 190–195 (1990).

    Article  CAS  Google Scholar 

  32. Ouyang, X. et al. Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. RSC Adv. 5, 61650–61656 (2015).

    Article  CAS  Google Scholar 

  33. Karimi, B., Biglari, A., Clark, J. H. & Budarin, V. Green, transition-metal-free aerobic oxidation of alcohols using a highly durable supported organocatalyst. Angew. Chem. Int. Ed. 119, 7348–7351 (2007).

    Article  Google Scholar 

  34. Jin, Y., Edler, K. J., Marken, F. & Scott, J. L. Voltammetric optimisation of TEMPO-mediated oxidations at cellulose fabric. Green. Chem. 16, 3322–3327 (2014).

    Article  CAS  Google Scholar 

  35. Kumar, V. & Yang, T. Analysis of carboxyl content in oxidized celluloses by solid-state 13C CP MAS NMR spectroscopy. Int. J. Pharm. 184, 219–226 (1999).

    Article  CAS  Google Scholar 

  36. Zeng, J., Singh, D., Laskar, D. D. & Chen, S. Degradation of native wheat straw lignin by Streptomyces viridosporus T7A. Int. J. Environ. Sci. Technol. 10, 165–174 (2013).

    Article  CAS  Google Scholar 

  37. Li, Y. et al. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients. Biomacromolecules 10, 1931–1938 (2009).

    Article  CAS  Google Scholar 

  38. Garvey, C. J., Parker, I. H. & Simon, G. P. On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol. Chem. Phys. 206, 1568–1575 (2005).

    Article  CAS  Google Scholar 

  39. Han, J. Q., Zhou, C. J., French, A. D., Han, G. P. & Wu, Q. L. Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr. Polym. 94, 773–781 (2013).

    Article  CAS  Google Scholar 

  40. Keckes, J. et al. Cell-wall recovery after irreversible deformation of wood. Nat. Mater. 2, 810–814 (2003).

    Article  CAS  Google Scholar 

  41. Wu, J. et al. Pickering emulsions stabilized by whey protein nanoparticles prepared by thermal cross-linking. Colloids Surf. B 127, 96–104 (2015).

    Article  CAS  Google Scholar 

  42. Vignati, E., Piazza, R. & Lockhart, T. P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19, 6650–6656 (2003).

    Article  CAS  Google Scholar 

  43. Deshmukh, O. S., Dirk, V. D. E., Martien Cohen, S., Frieder, M. & Duits, M. H. G. Hard and soft colloids at fluid interfaces: adsorption, interactions, assembly & rheology. Adv. Colloid Interface Sci. 222, 215–227 (2014).

    Article  CAS  Google Scholar 

  44. Brugger, B. et al. The colloidal suprastructure of smart microgels at oil–water interfaces. Angew. Chem. 48, 3978–3981 (2009).

    Article  CAS  Google Scholar 

  45. Zhang, Y., Karimkhani, V., Makowski, B. T., Samaranayake, G. & Rowan, S. J. Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals. Macromolecules 50, 6032–6042 (2017).

    Article  CAS  Google Scholar 

  46. Glaser, N., Adams, D. J., Böker, A. & Krausch, G. Janus particles at liquid–liquid interfaces. Langmuir 22, 5227–5229 (2006).

    Article  CAS  Google Scholar 

  47. Aveyard, R., Binks, B. P. & Clint, J. H. Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100–102, 503–546 (2003).

    Article  CAS  Google Scholar 

  48. Aslanidou, D., Tsioptsias, C. & Panayiotou, C. A novel approach for textile cleaning based on supercritical CO2 and Pickering emulsions. J. Supercrit. Fluids 76, 83–93 (2013).

    Article  CAS  Google Scholar 

  49. Salerno, A. et al. Pickering emulsions for skin decontamination. Toxicol. Vitr. 34, 45–54 (2016).

    Article  CAS  Google Scholar 

  50. Fan, X. M. et al. Designing highly luminescent cellulose nanocrystals with modulated morphology for multifunctional bioimaging materials. ACS Appl. Mater. Interfaces 11, 48192–48201 (2019).

    Article  CAS  Google Scholar 

  51. Zhang, H. J. et al. A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess. Biosyst. Eng. 37, 2425–2436 (2014).

    Article  CAS  Google Scholar 

  52. Jean, B., Dubreuil, F., Heux, L. & Cousin, F. Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24, 3452–3458 (2008).

    Article  CAS  Google Scholar 

  53. Segal, L., Creely, J. J. Jr, Martin, A. E. & Conrad, C. M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959).

    Article  CAS  Google Scholar 

  54. Capitani, D., Del Nobile, M. A., Mensitieri, G., Sannino, A. & Segre, A. L. 13C solid-state NMR determination of cross-linking degree in superabsorbing cellulose-based networks. Macromolecules 33, 430–437 (2000).

    Article  CAS  Google Scholar 

  55. Garrison, C., Thackeray, R. & Mangum, S. Strength and whiteness retention of stained and treated nurse’s uniform fabrics. Int. J. Cloth. Sci. Tech. 4, 34–39 (1992).

    Article  Google Scholar 

  56. Bao, W. E. et al. Nanolongan with multiple on-demand conversions for ferroptosis-apoptosis combined anticancer therapy. ACS Nano 13, 260–273 (2019).

    Article  CAS  Google Scholar 

  57. Guideline for Testing of Chemicals Section, Fish Acute Toxicity Test (OECD, 1992); https://go.nature.com/38BxgVt

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China grant nos. NSFC31471577, 31772014 and 31972202, the Beijing Nova Program by Beijing Municipal Science and Technology Commission grant no. Z181100006218071, the Young Elite Scientists Sponsorship Program by China Association for Science and Technology grant no. 2016QNRC001 and the National Key R&D program by Ministry of Science and Technology of China grant no. 2016YFD0400804. Y.L. acknowledges insightful discussions of this manuscript with H. Lin (Cornell University) and H. Ma, J. Wang, G. Cheng, C. Liu and H. Liang (Beijing University of Chemical Technology).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. managed the whole project and designed all experiments. F.R. helped with manuscript revising, data analysis and provided experimental conditions. B.L. performed the preparation, characterization and cleaning experiments of CNSs. T.L. performed toxicity experiments and manuscript writing. W.W. assisted with the steam explosion of corncob. L.M.C.S. performed data analysis of interfacial properties. Q.Y. provided the corncob and helped with data analysis. X.L. and M.A.C. revised the manuscript. D.L., C.B. and J.B. helped with cytotoxicity experiments. Z.Y. assisted with the statistical analysis of toxicity data.

Corresponding authors

Correspondence to Fazheng Ren or Yuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–10, Tables 1–5 and refs. 1–3.

Reporting Summary

Source data

Source Data Fig. 4b

Statistical Source Data

Source Data Fig. 5a and 5d

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Li, T., Wang, W. et al. Corncob cellulose nanosphere as an eco-friendly detergent. Nat Sustain 3, 448–458 (2020). https://doi.org/10.1038/s41893-020-0501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-0501-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing