Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vulnerability of honey bee queens to heat-induced loss of fertility

Abstract

All species need to reproduce to maintain viable populations, but heat stress kills sperm cells across the animal kingdom and rising frequencies of heat waves are a threat to biodiversity. Honey bees (Apis mellifera) are globally distributed microlivestock; therefore, they could serve as environmental biomonitors for fertility losses. Here, we found that queens have two potential routes of temperature-stress exposure: within colonies and during routine shipping. Our data suggest that temperatures of 15–38 °C are safe for queens at a tolerance threshold of 11.5% loss of sperm viability, which is the viability difference associated with queen failure in the field. Heat shock activates expression of specific stress-response proteins in the spermatheca, which could serve as molecular biomarkers (indicators) for heat stress. This protein fingerprint may eventually enable surveys for the prevalence of heat-induced loss of sperm viability in diverse landscapes as part of a biomonitoring programme.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observational data on shipping temperatures, hive temperatures and stored sperm viability.
Fig. 2: Viability of stored and ejaculated sperm after temperature stress.
Fig. 3: Sex-biased heat mortality in honey bees, stink bugs and fruit flies.
Fig. 4: Differential protein expression comparing heat-shocked and not heat-shocked reproductive tissues.
Fig. 5: GO term enrichment analyses.
Fig. 6: HSP expression profiles.

Data availability

All raw mass spectrometry data, protein databases and search results are available on PRIDE ProteomeXchange (accession: PXD013728). Figures with associated raw mass spectrometry data include Figs. 46 and Supplementary Fig. 4. Global protein abundances and P values for the laboratory heat-shock comparisons are available in Supplementary Data 1. Source Data for Figs. 1 and 2 are provided as Source Data files. Any other data that support the findings of this study are available from the corresponding author on request.

Code availability

No specialized code central to our conclusions was used in this manuscript. R code for standard statistical analyses and figure generation will be provided upon request.

References

  1. 1.

    Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  Google Scholar 

  2. 2.

    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change 1, 313–318 (2011).

    Article  Google Scholar 

  4. 4.

    Sales, K. et al. Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect. Nat. Commun. 9, 4771 (2018).

    Article  CAS  Google Scholar 

  5. 5.

    Walsh, B. S. et al. The impact of climate change on fertility. Trends Ecol. Evol. 34, 249–259 (2019).

    Article  Google Scholar 

  6. 6.

    Zeh, J. A. et al. Degrees of disruption: projected temperature increase has catastrophic consequences for reproduction in a tropical ectotherm. Glob. Change Biol. 18, 1833–1842 (2012).

    Article  Google Scholar 

  7. 7.

    Jannes, P. et al. Male subfertility induced by acute scrotal heating affects embryo quality in normal female mice. Hum. Reprod. 13, 372–375 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    Pérez-Crespo, M., Pintado, B. & Gutiérrez-Adán, A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75, 40–47 (2008).

    Article  CAS  Google Scholar 

  9. 9.

    Setchell, B. The effects of heat on the testes of mammals. Anim. Reprod. 3, 81–91 (2006).

    Google Scholar 

  10. 10.

    Thonneau, P., Bujan, L., Multigner, L. & Mieusset, R. Occupational heat exposure and male fertility: a review. Hum. Reprod. 13, 2122–2125 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    Yaeram, J., Setchell, B. P. & Maddocks, S. Effect of heat stress on the fertility of male mice in vivo and in vitro. Reprod. Fertil. Dev. 18, 647–653 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    Hurley, L. L., McDiarmid, C. S., Friesen, C. R., Griffith, S. C. & Rowe, M. Experimental heatwaves negatively impact sperm quality in the zebra finch. Proc. R. Soc. B 285, 20172547 (2018).

    Article  Google Scholar 

  13. 13.

    Breckels, R. D. & Neff, B. D. The effects of elevated temperature on the sexual traits, immunology and survivorship of a tropical ectotherm. J. Exp. Biol. 216, 2658–2664 (2013).

    Article  Google Scholar 

  14. 14.

    Harvey, S. C. & Viney, M. E. Thermal variation reveals natural variation between isolates of Caenorhabditis elegans. J. Exp. Zool. B Mol. Dev. Evol. 308, 409–416 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    Porcelli, D., Gaston, K. J., Butlin, R. K. & Snook, R. R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 30, 422–429 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Gasparini, C., Lu, C., Dingemanse, N. J. & Tuni, C. Paternal-effects in a terrestrial ectotherm are temperature dependent but no evidence for adaptive effects. Funct. Ecol. 32, 1011–1021 (2018).

    Article  Google Scholar 

  17. 17.

    Saxena, B., Sharma, P., Thappa, R. & Tikku, K. Temperature induced sterilization for control of three stored grain beetles. J. Stored Prod. Res. 28, 67–70 (1992).

    Article  Google Scholar 

  18. 18.

    Pettis, J. S., Rice, N., Joselow, K., vanEngelsdorp, D. & Chaimanee, V. Colony failure linked to low sperm viability in honey bee (Apis mellifera) queens and an exploration of potential causative factors. PLoS ONE 11, e0147220 (2016).

    Article  CAS  Google Scholar 

  19. 19.

    Stürup, M., Baer-Imhoof, B., Nash, D. R., Boomsma, J. J. & Baer, B. When every sperm counts: factors affecting male fertility in the honeybee Apis mellifera. Behav. Ecol. 24, 1192–1198 (2013).

    Article  Google Scholar 

  20. 20.

    Zizzari, Z. V. & Ellers, J. Effects of exposure to short-term heat stress on male reproductive fitness in a soil arthropod. J. Insect Physiol. 57, 421–426 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    David, J. R. et al. Male sterility at extreme temperatures: a significant but neglected phenomenon for understanding Drosophila climatic adaptations. J. Evol. Biol. 18, 838–846 (2005).

    CAS  Article  Google Scholar 

  22. 22.

    Hansen, P. J. Effects of heat stress on mammalian reproduction. Philos. Trans. R. Soc. Lond. B 364, 3341–3350 (2009).

    Article  Google Scholar 

  23. 23.

    Gong, Y. et al. Heat stress reduces sperm motility via activation of glycogen synthase kinase-3α and inhibition of mitochondrial protein import. Front. Physiol. 8, 718 (2017).

    Article  Google Scholar 

  24. 24.

    Yang, R. C., Shen, M. R., Chiang, P. H., Yang, S. L. & Chen, S. S. A possible role of heat shock proteins in human sperm motility. Gaoxiong Yi Xue Ke Xue Za Zhi 8, 299–305 (1992).

    CAS  Google Scholar 

  25. 25.

    Luber, G. & McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 35, 429–435 (2008).

    Article  Google Scholar 

  26. 26.

    Hayhoe, K., Sheridan, S., Kalkstein, L. & Greene, S. Climate change, heat waves, and mortality projections for Chicago. J. Great Lakes Res. 36, 65–73 (2010).

    Article  Google Scholar 

  27. 27.

    Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article  Google Scholar 

  29. 29.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article  CAS  Google Scholar 

  30. 30.

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    Rasmont, P. & Mersch, P. First estimation of faunistic drift by bumblebees of Belgium (Hymenoptera: Apidae). Ann. Soc. R. Zool. Belg. 118, 141–147 (1988).

    Google Scholar 

  32. 32.

    Winfree, R., Aguilar, R., Vázquez, D. P., LeBuhn, G. & Aizen, M. A. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology 90, 2068–2076 (2009).

    Article  Google Scholar 

  33. 33.

    Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).

    Article  Google Scholar 

  34. 34.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    Whitehorn, P. R., Tinsley, M. C., Brown, M. J., Darvill, B. & Goulson, D. Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc. R. Soc. Lond. B 278, 1195–1202 (2010).

    Article  Google Scholar 

  36. 36.

    McCallum, H. & Dobson, A. Disease, habitat fragmentation and conservation. Proc. Biol. Sci. 269, 2041–2049 (2002).

    Article  Google Scholar 

  37. 37.

    Baer, B., Collins, J., Maalaps, K. & den Boer, S. P. Sperm use economy of honeybee (Apis mellifera) queens. Ecol. Evol. 6, 2877–2885 (2016).

    Article  Google Scholar 

  38. 38.

    Delaney, D. A., Keller, J. J., Caren, J. R. & Tarpy, D. R. The physical, insemination, and reproductive quality of honey bee queens (Apis mellifera L.). Apidologie 42, 1–13 (2011).

    Article  Google Scholar 

  39. 39.

    Tarpy, D. R. & Olivarez, R. Jr Measuring sperm viability over time in honey bee queens to determine patterns in stored-sperm and queen longevity. J. Apic. Res. 53, 493–495 (2014).

    Article  Google Scholar 

  40. 40.

    Stabentheiner, A., Kovac, H. & Brodschneider, R. Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS ONE 5, e8967 (2010).

    Article  CAS  Google Scholar 

  41. 41.

    Alattal, Y. Impact of temperature extremes on survival of indigenous and exotic honey bee subspecies, Apis mellifera, under desert and semiarid climates. Bull. Insectol. 68, 219–222 (2015).

    Google Scholar 

  42. 42.

    Fahrenholz, L., Lamprecht, I. & Schricker, B. Thermal investigations of a honey bee colony: thermoregulation of the hive during summer and winter and heat production of members of different bee castes. J. Comp. Physiol. B 159, 551–560 (1989).

    Article  Google Scholar 

  43. 43.

    Bordier, C. et al. Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera). Sci. Rep. 7, 3760 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    Villa, J. D., Gentry, C. & Taylor, O. R. Preliminary observations on thermoregulation, clustering, and energy utilization in African and European honey bees. J. Kans. Entomol. Soc. 60, 4–14 (1987).

    Google Scholar 

  45. 45.

    Smith, K. E. et al. Honey as a biomonitor for a changing world. Nat. Sustain. 2, 223–232 (2019).

    Article  Google Scholar 

  46. 46.

    Mitchell, J. D., Hewitt, P. & Van Der Linde, T. D. K. Critical thermal limits and temperature tolerance in the harvester termite Hodotermes mossambicus (Hagen). J. Insect Physiol. 39, 523–528 (1993).

    Article  Google Scholar 

  47. 47.

    Clémencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insectes Soc. 57, 11–15 (2010).

    Article  Google Scholar 

  48. 48.

    Baudier, K. M., Mudd, A. E., Erickson, S. C. & O’Donnell, S. Microhabitat and body size effects on heat tolerance: implications for responses to climate change (army ants: Formicidae, Ecitoninae). J. Anim. Ecol. 84, 1322–1330 (2015).

    Article  Google Scholar 

  49. 49.

    Chirault, M. et al. A combined approach to heat stress effect on male fertility in Nasonia vitripennis: from the physiological consequences on spermatogenesis to the reproductive adjustment of females mated with stressed males. PLoS ONE 10, e0120656 (2015).

    Article  CAS  Google Scholar 

  50. 50.

    Hidalgo, K., Beaugeard, E., Renault, D., Dedeine, F. & Lécureuil, C. Physiological and biochemical responses to thermal stress vary among genotypes in the parasitic wasp Nasonia vitripennis. J. Insect Physiol. 117, 103909 (2019).

    Article  CAS  Google Scholar 

  51. 51.

    Macías-Macías, J. O. et al. Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini). Apidologie 42, 679–689 (2011).

    Article  Google Scholar 

  52. 52.

    Oberg, E., Del Toro, I. & Pelini, S. Characterization of the thermal tolerances of forest ants of New England. Insectes Soc. 59, 167–174 (2012).

    Article  Google Scholar 

  53. 53.

    Verble-Pearson, R. M., Gifford, M. E. & Yanoviak, S. P. Variation in thermal tolerance of North American ants. J. Therm. Biol. 48, 65–68 (2015).

    Article  Google Scholar 

  54. 54.

    Andrew, N. R., Hart, R. A., Jung, M.-P., Hemmings, Z. & Terblanche, J. S. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. J. Insect Physiol. 59, 870–880 (2013).

    CAS  Article  Google Scholar 

  55. 55.

    Abou-Shaara, H. F., Al-Ghamdi, A. A. & Mohamed, A. A. Tolerance of two honey bee races to various temperature and relative humidity gradients. Environ. Exp. Biol. 10, 133–138 (2012).

    Google Scholar 

  56. 56.

    Scaccini, D., Duso, C. & Pozzebon, A. Lethal effects of high temperatures on brown marmorated stink bug adults before and after overwintering. Insects 10, 355 (2019).

    Article  Google Scholar 

  57. 57.

    Paynter, E. et al. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Sci. Rep. 7, 40236 (2017).

    CAS  Article  Google Scholar 

  58. 58.

    Collins, A., Williams, V. & Evans, J. Sperm storage and antioxidative enzyme expression in the honey bee, Apis mellifera. Insect Mol. Biol. 13, 141–146 (2004).

    CAS  Article  Google Scholar 

  59. 59.

    Weirich, G. F., Collins, A. M. & Williams, V. P. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3–14 (2002).

    CAS  Article  Google Scholar 

  60. 60.

    Wagner, H., Cheng, J. W. & Ko, E. Y. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J. Urol. 16, 35–43 (2018).

    Article  Google Scholar 

  61. 61.

    Agarwal, A., Virk, G., Ong, C. & du Plessis, S. S. Effect of oxidative stress on male reproduction. World J. Men’s Health 32, 1–17 (2014).

    Article  Google Scholar 

  62. 62.

    Ikwegbue, P. C., Masamba, P., Oyinloye, B. E. & Kappo, A. P. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11, 2 (2018).

    Article  CAS  Google Scholar 

  63. 63.

    Ren, X., Chen, X., Wang, Z. & Wang, D. Is transcription in sperm stationary or dynamic? J. Reprod. Dev. 63, 439–443 (2017).

  64. 64.

    Mayer, M. P. & Bukau, B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62, 670–684 (2005).

    CAS  Article  Google Scholar 

  65. 65.

    Yue, L. et al. Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis. Genetics 151, 1065–1079 (1999).

    CAS  Google Scholar 

  66. 66.

    Ji, Z.-L. et al. Association of heat shock proteins, heat shock factors and male infertility. Asian Pac. J. Reprod. 1, 76–84 (2012).

    Article  Google Scholar 

  67. 67.

    Bakthisaran, R., Tangirala, R. & Rao, C. M. Small heat shock proteins: role in cellular functions and pathology. Biochim. Biophys. Acta 1854, 291–319 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  69. 69.

    Morrow, G. & Tanguay, R. M. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process. Front. Genet. 6, 1026 (2015).

    Article  CAS  Google Scholar 

  70. 70.

    Wójtowicz, I. et al. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 142, 994–1005 (2015).

    Article  CAS  Google Scholar 

  71. 71.

    Kamradt, M. C., Chen, F. & Cryns, V. L. The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J. Biol. Chem. 276, 16059–16063 (2001).

    CAS  Article  Google Scholar 

  72. 72.

    Paul, C. et al. Hsp27 as a negative regulator of cytochrome C release. Mol. Cell. Biol. 22, 816–834 (2002).

    CAS  Article  Google Scholar 

  73. 73.

    Izu, H. et al. Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol. Reprod. 70, 18–24 (2004).

    CAS  Article  Google Scholar 

  74. 74.

    Rockett, J. C. et al. Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biol. Reprod. 65, 229–239 (2001).

    CAS  Article  Google Scholar 

  75. 75.

    Biggiogera, M. et al. Localization of heat shock proteins in mouse male germ cells: an immunoelectron microscopical study. Exp. Cell. Res. 229, 77–85 (1996).

    CAS  Article  Google Scholar 

  76. 76.

    Zhang, X. S. et al. Dedifferentiation of adult monkey Sertoli cells through activation of extracellularly regulated kinase 1/2 induced by heat treatment. Endocrinology 147, 1237–1245 (2006).

    CAS  Article  Google Scholar 

  77. 77.

    Collins, A. & Donoghue, A. Viability assessment of honey bee, Apis mellifera, sperm using dual fluorescent staining. Theriogenology 51, 1513–1523 (1999).

    CAS  Article  Google Scholar 

  78. 78.

    Cobey, S. W., Tarpy, D. R. & Woyke, J. Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 52, 1–18 (2013).

    Article  Google Scholar 

  79. 79.

    Taylor, C. M., Coffey, P. L., Hamby, K. A. & Dively, G. P. Laboratory rearing of Halyomorpha halys: methods to optimize survival and fitness of adults during and after diapause. J. Pest Sci. 90, 1069–1077 (2017).

    Article  Google Scholar 

  80. 80.

    Mackensen, O. Effect of carbon dioxide on initial oviposition of artificially inseminated and virgin queen bees. J. Econ. Entomol. 40, 344–349 (2014).

    Article  Google Scholar 

  81. 81.

    Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    CAS  Article  Google Scholar 

  82. 82.

    McAfee, A., Chan, Q., Evans, J. & Foster, L. J. A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation. Mol. Cell. Proteom. 16, 2125–2137 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    Lee, H. K., Braynen, W., Keshav, K. & Pavlidis, P. ErmineJ: tool for functional analysis of gene expression data sets. BMC Bioinf. 6, 269 (2005).

    Article  CAS  Google Scholar 

  84. 84.

    McAfee, A., Pettis, J. S., Tarpy, D. R. & Foster, L. J. Feminizer and doublesex knock-outs cause honey bees to switch sexes. PLoS Biol. 17, e3000256 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Council of Canada Discovery grant no. 311654-11 and grants from Genome Canada and Genome British Columbia awarded to L.J.F.; Project Apis m grants awarded to A.M., M.M.G. and J.S.P.; and USDA-NIFA grant no. 2016-07962 awarded to J.S.P. and D.R.T. We thank A. Sébastien and M. Jelen for providing us with stink bugs and fruit flies, respectively, for the survival experiments. We also thank Ashurst Bee Company for help with colony heat testing and Kettle Valley Queens, Nicola Valley Honey, Wild Antho, Campbells Gold Honey, Heather Meadows Honey Farm, Six Legs Good Apiaries, Wildwood Queens, Cariboo Honey and Worker Bee Honey Company for donating failed and healthy queens for this research.

Author information

Affiliations

Authors

Contributions

A.M. wrote the first draft of the manuscript and revisions, conducted all data analysis, made the figures and performed the proteomics experiments. A.C. and A.M. conducted the failed queen survey, with assistance from H.H. and M.M.G. H.H. and M.M.G. executed the queen shipment temperature tracking. J.M. performed the survival experiments. M.M.G. and J.S.P. performed the drone sperm viability analyses. R.U. contributed the age-matched failed and healthy queens. J.S.P. performed the queen sperm viability measurements across the range of temperatures and measured internal hive temperatures. Grants to D.R.T., J.S.P., M.M.G., A.M. and L.J.F. supported this research. All authors contributed intellectually.

Corresponding authors

Correspondence to Leonard J. Foster or M. Marta Guarna or David R. Tarpy.

Ethics declarations

Competing interests

J.S.P. owns a honey bee consulting business. All other authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

This file contains global LFQ protein expression data and GO term enrichment results for ovaries, spermathecae and semen.

Source data

Source Data Fig. 1

Sperm viability data for failed and healthy queens collected from beekeepers, temperature data for shipments and temperature data for hives.

Source Data Fig. 2

Sperm viability data for temperature-stressed queens and drones.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McAfee, A., Chapman, A., Higo, H. et al. Vulnerability of honey bee queens to heat-induced loss of fertility. Nat Sustain 3, 367–376 (2020). https://doi.org/10.1038/s41893-020-0493-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing