Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Graphene oxide nanofiltration membranes for desalination under realistic conditions

Abstract

The demands of clean water production and wastewater recycling continue to drive nanofiltration membrane development. Graphene oxide (GO) membranes have exhibited the potential to revolutionize nanofiltration, but sustaining high solute rejections at realistic concentrations remains a major challenge. Here we show that a series of membranes based on GO bound to polycyclic π-conjugated cations such as toluidine blue O show substantially enhanced rejections for salts and neutral solutes over a wide concentration range. The observed solute rejection behaviours in these π-intercalated GO membranes can be understood by a dual mechanism of interlayer spacing modulation and creation of diffusion barriers in the two-dimensional interlayer galleries. These membranes are easily scalable and possess good chemical and mechanical robustness in desalination of a multicomponent industrial stream at elevated pH, temperature, stream velocity and solids content.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of the GO–TBO membranes.
Fig. 2: Schematic microstructures of GO–TBO membranes.
Fig. 3: Rejections of the GO–TBO membranes.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information files. Raw instrumental characterization data (X-ray diffraction, UV-vis and fluorescence spectra) are shown graphically. The numerical versions of these data are available from the corresponding author upon request.

References

  1. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  2. Nair, R. R., Wu, H. A., Jayaram, P. N., Grigorieva, I. V. & Geim, A. K. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science 335, 442–444 (2012).

    Article  CAS  Google Scholar 

  3. Mi, B. Graphene oxide membranes for ionic and molecular sieving. Science 343, 740–742 (2014).

    Article  CAS  Google Scholar 

  4. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  Google Scholar 

  5. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    Article  CAS  Google Scholar 

  6. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  Google Scholar 

  7. Homaeigohar, S. & Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 9, e427 (2017).

    Article  CAS  Google Scholar 

  8. Morelos-Gomez, A. et al. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nat. Nanotechnol. 12, 1083–1088 (2017).

    Article  CAS  Google Scholar 

  9. Rashidi, F., Kevlich, N. S., Sinquefield, S. A., Shofner, M. L. & Nair, S. Graphene oxide membranes in extreme operating environments: concentration of Kraft black liquor by lignin retention. ACS Sustain. Chem. Eng. 5, 1002–1009 (2017).

    Article  CAS  Google Scholar 

  10. Wang, Z., Ma, C., Sinquefield, S. A., Shofner, M. L. & Nair, S. High-Performance graphene oxide nanofiltration membranes for black liquor concentration. ACS Sustain. Chem. Eng. 7, 14915–14923 (2019).

    Article  CAS  Google Scholar 

  11. Yang, Q. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16, 1198–1202 (2017).

    Article  CAS  Google Scholar 

  12. Akbari, A. et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

    Article  CAS  Google Scholar 

  13. Han, Y., Jiang, Y. & Gao, C. High-Flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015).

    Article  CAS  Google Scholar 

  14. Yuan, S. et al. Minimizing non-selective nanowrinkles of reduced graphene oxide laminar membranes for enhanced NaCl rejection. Environ. Sci. Technol. Lett. 7, 273–279 (2020).

    Article  Google Scholar 

  15. Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).

    Article  CAS  Google Scholar 

  16. Marcus, Y. Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988).

    Article  CAS  Google Scholar 

  17. Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

    Article  CAS  Google Scholar 

  18. Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

    Article  CAS  Google Scholar 

  19. Yang, J. et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv. Mater. 30, 1705775 (2018).

    Article  Google Scholar 

  20. Xu, X.-L. et al. Graphene oxide nanofiltration membranes stabilized by cationic porphyrin for high salt rejection. ACS Appl. Mater. Interfaces 8, 12588–12593 (2016).

    Article  CAS  Google Scholar 

  21. Jia, Z., Wang, Y., Shi, W. & Wang, J. Diamines cross-linked graphene oxide free-standing membranes for ion dialysis separation. J. Membr. Sci. 520, 139–144 (2016).

    Article  CAS  Google Scholar 

  22. El-Kady, M. F., Shao, Y. & Kaner, R. B. Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016).

    Article  CAS  Google Scholar 

  23. Sun, P., Wang, K. & Zhu, H. Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28, 2287–2310 (2016).

    Article  CAS  Google Scholar 

  24. Fornasiero, F. et al. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl Acad. Sci. USA 105, 17250–17255 (2008).

    Article  CAS  Google Scholar 

  25. Childress, A. E. & Elimelech, M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Membr. Sci. 119, 253–268 (1996).

    Article  CAS  Google Scholar 

  26. Bartels, C., Franks, R., Rybar, S., Schierach, M. & Wilf, M. The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 184, 185–195 (2005).

    Article  CAS  Google Scholar 

  27. Wu, Y., Tam, N. F. Y. & Wong, M. H. Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Mar. Pollut. Bull. 57, 727–734 (2008).

    Article  CAS  Google Scholar 

  28. Konkena, B. & Vasudevan, S. Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J. Phys. Chem. Lett. 3, 867–872 (2012).

    Article  CAS  Google Scholar 

  29. Xu, Y. et al. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 131, 13490–13497 (2009).

    Article  CAS  Google Scholar 

  30. Zheng, S., Tu, Q., Urban, J. J., Li, S. & Mi, B. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11, 6440–6450 (2017).

    Article  CAS  Google Scholar 

  31. Matassa, R., Sadun, C., D’Ilario, L., Martinelli, A. & Caminiti, R. Supramolecular organization of toluidine blue dye in solid amorphous phases. J. Phys. Chem. B 111, 1994–1999 (2007).

    Article  CAS  Google Scholar 

  32. D’Ilario, L. & Martinelli, A. Toluidine blue: aggregation properties and structural aspects. Model. Simul. Mater. Sci. Eng. 14, 581–595 (2006).

    Article  Google Scholar 

  33. Zhang, M. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).

    Article  Google Scholar 

  34. Chen, X., Qiu, M., Ding, H., Fu, K. & Fan, Y. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8, 5696–5705 (2016).

    Article  CAS  Google Scholar 

  35. Wei, Y. et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016).

    Article  CAS  Google Scholar 

  36. Hung, W.-S. et al. Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J. Mater. Chem. A 6, 19445–19454 (2018).

    Article  CAS  Google Scholar 

  37. Li, W., Wu, W. & Li, Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano 12, 9309–9317 (2018).

    Article  CAS  Google Scholar 

  38. Zhang, Z. et al. Interfacial force-assisted in-situ fabrication of graphene oxide membrane for desalination. ACS Appl. Mater. Interfaces 10, 27205–27214 (2018).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Thermally reduced nanoporous graphene oxide membrane for desalination. Environ. Sci. Technol. 53, 8314–8323 (2019).

    Article  CAS  Google Scholar 

  40. Rajesh, S. & Bose, A. B. Development of graphene oxide framework membranes via the “from” and “to” cross-linking approach for ion-selective separations. ACS Appl. Mater. Interfaces 11, 27706–27716 (2019).

    Article  CAS  Google Scholar 

  41. Chen, L. et al. A large-area free-standing graphene oxide multilayer membrane with high stability for nanofiltration applications. Chem. Eng. J. 345, 536–544 (2018).

    Article  CAS  Google Scholar 

  42. Jimbo, T., Tanioka, A. & Minoura, N. Pore-surface characterization of poly(acrylonitrile) membrane having amphoteric charge groups by means of zeta potential measurement. Colloids Surf. A 159, 459–466 (1999).

    Article  CAS  Google Scholar 

  43. Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    Article  CAS  Google Scholar 

  44. Kevlich, N. S., Shofner, M. L. & Nair, S. Membranes for Kraft black liquor concentration and chemical recovery: current progress, challenges, and opportunities. Sep. Sci. Technol. 52, 1070–1094 (2017).

    Article  CAS  Google Scholar 

  45. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain 3, 296–302 (2020).

    Article  Google Scholar 

  46. Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).

    Article  CAS  Google Scholar 

  47. Thomas, T. E., Aani, S. A., Oatley-Radcliffe, D. L., Williams, P. M. & Hilal, N. Laser Doppler electrophoresis and electro-osmotic flow mapping: a novel methodology for the determination of membrane surface zeta potential. J. Membr. Sci. 523, 524–532 (2017).

    Article  CAS  Google Scholar 

  48. Masuko, T. et al. Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339, 69–72 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the following individuals at Georgia Tech: E. Reichmanis and Y. Deng for instrumentation access; N. Hooshmand, A. Korde and S. Liang for useful discussions. We acknowledge financial support by the DOE-RAPID Institute (#DE-EE0007888-7-5) and an industrial consortium comprising Georgia-Pacific, International Paper, SAPPI and WestRock. Z.W. acknowledges the additional support from the Georgia Tech Renewable Bioproducts Institute for a PhD Fellowship. XRD, XPS and SEM characterizations were performed at the Georgia Tech Institute for Electronics and Nanotechnology, home to one of the 16 sites of the National Nanotechnology Coordinated Infrastructure (NNCI), which was supported by the National Science Foundation (grant no. ECCS-1542174).

Author information

Authors and Affiliations

Authors

Contributions

S.N., Z.W. and M.L.S. conceived this work. Z.W., C.M., S.A.S. and C.X. designed and conducted synthesis, structure characterization and membrane coupon permeation experiments. C.M. and S.A.S. performed membrane size scale-up and crossflow measurements. All authors participated in the interpretation of data and in writing of this manuscript.

Corresponding author

Correspondence to Sankar Nair.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Juergen Caro and Yanying Wei for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ma, C., Xu, C. et al. Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat Sustain 4, 402–408 (2021). https://doi.org/10.1038/s41893-020-00674-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00674-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing