Assessing health and environmental impacts of solvents for producing perovskite solar cells

Abstract

Halide perovskites are poised as a game-changing semiconductor system with diverse applications in optoelectronics. Industrial entities aim to commercialize perovskite technologies because of high performance but also because this type of semiconductor can be processed from solution, a feature enabling low cost and fast production. Here, we analyse the health and environmental impacts of eight solvents commonly used in perovskite processing. We consider first- and higher-order ramifications of each solvent on an industrial scale such as solvent production, use/removal, emissions and potential end-of-life treatments. Further, we consider the energy of evaporation for each solvent, air emission, condensation and subsequent incineration, reuse or distillation for solvent recycling, and apply a full end-of-life analysis. For human health impact, we use the ‘USEtox’ method but also consider toxicity data beyond carcinogenic classifications. We find that dimethyl sulfoxide has the lowest total impact, by being the most environmentally friendly and least deleterious to human health of the solvents considered. The analysis of the effects of these solvents on human health and the environment provides guidance for sustainable development of this new technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: LCA system boundary schematic showing possible pathways for production of perovskite PVs.
Fig. 2: Human health characterization factors expressed in DALYs per kg of substance emitted for the scenario of emission to urban air.
Fig. 3: Life cycle assessment of eight aprotic solvents for perovskite film manufacturing with four potential scenarios for EOL.

Data availability

The datasets generated during and/or analysed during the current study are available from the first author on reasonable request.

References

  1. 1.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Google Scholar 

  2. 2.

    Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    CAS  Google Scholar 

  3. 3.

    Kim, H.-S. et al. Lead iodide perovskite sensitized all-slid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).

    Google Scholar 

  4. 4.

    Best Research-Cell Efficiency Chart (NREL, accessed 15 March 2020); https://www.nrel.gov/pv/cell-efficiency.html

  5. 5.

    Berry, J. J. et al. Perovskite photovoltaics: the path to a printable terawatt-scale technology. ACS Energy Lett. 2, 2540–2544 (2017).

    CAS  Google Scholar 

  6. 6.

    Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    CAS  Google Scholar 

  7. 7.

    Jean, J., Woodhouse, M. & Bulović, V. Accelerating photovoltaic market entry with module replacement. Joule 3, 2824–2841 (2019).

    Google Scholar 

  8. 8.

    Ono, L. K., Park, N.-G., Zhu, K., Huang, W. & Qi, Y. Perovskite solar cells—towards commercialization. ACS Energy Lett. 2, 1749–1751 (2017).

    CAS  Google Scholar 

  9. 9.

    Galagan, Y. Perovskite solar cells: toward industrial-scale methods. J. Phys. Chem. Lett. 9, 4326–4335 (2018).

    CAS  Google Scholar 

  10. 10.

    Li, Z. et al. Acid additives enhancing the conductivity of spiro-OMeTAD toward high-efficiency and hysteresis-less planar perovskite solar cells. Adv. Energy Mater. 7, 1601451 (2017).

    Google Scholar 

  11. 11.

    Swartwout, R., Hoerantner, M. T. & Bulović, V. Scalable deposition methods for large‐area production of perovskite thin films. Energy Environ. Mater. 2, 119–145 (2019).

    CAS  Google Scholar 

  12. 12.

    Authorisation. European Chemicals Agency (ECHA); https://echa.europa.eu/substances-of-very-high-concern-identification-explained (accessed 16 November 2020).

  13. 13.

    Jimenez-Gonzalez, C. Life cycle considerations of solvents. Curr. Opin. Green Sustain. Chem. 18, 66–71 (2019).

    Google Scholar 

  14. 14.

    Celik, I., Song, Z., Phillips, A. B., Heben, M. J. & Apul, D. Life cycle analysis of metals in emerging photovoltaic (PV) technologies: a modeling approach to estimate use phase leaching. J. Clean. Prod. 186, 632–639 (2018).

    CAS  Google Scholar 

  15. 15.

    Zhang, J., Gao, X., Deng, Y., Zha, Y. & Yuan, C. Comparison of life cycle environmental impacts of different perovskite solar cell systems. Sol. Energy Mater. Sol. Cells 166, 9–17 (2017).

    Google Scholar 

  16. 16.

    Alberola-Borràs, J.-A. et al. Relative impacts of methylammonium lead triiodide perovskite solar cells based on life cycle assessment. Sol. Energy Mater. Sol. Cells 179, 169–177 (2018).

    Google Scholar 

  17. 17.

    Gong, J., Darling, S. B. & You, F. Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8, 1953–1968 (2015).

    CAS  Google Scholar 

  18. 18.

    Monteiro Lunardi, M., Wing Yi Ho-Baillie, A., Alvarez-Gaitan, J. P., Moore, S. & Corkish, R. A life cycle assessment of perovskite/silicon tandem solar cells. Prog. Photovolt. Res. Appl. 25, 679–695 (2017).

    CAS  Google Scholar 

  19. 19.

    Espinosa, N., Serrano-Luján, L., Urbina, A. & Krebs, F. C. Solution and vapour deposited lead perovskite solar cells: ecotoxicity from a life cycle assessment perspective. Sol. Energy Mater. Sol. Cells 137, 303–310 (2015).

    CAS  Google Scholar 

  20. 20.

    Sánchez, S. et al. Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Mater. Today 31, 39–46 (2019).

    Google Scholar 

  21. 21.

    Alberola-Borràs, J.-A., Vidal, R. & Mora-Seró, I. Evaluation of multiple catioNAnion perovskite solar cells through life cycle assessment. Sustain. Energy Fuels 2, 1600–1609 (2018).

    Google Scholar 

  22. 22.

    Alberola-Borràs, J.-A. et al. Perovskite photovoltaic modules: life cycle assessment of pre-industrial production process. iScience 9, 542–551 (2018).

    Google Scholar 

  23. 23.

    Gardner, K. L. et al. Nonhazardous solvent systems for processing perovskite photovoltaics. Adv. Energy Mater. 6, 1600386 (2016).

    Google Scholar 

  24. 24.

    Galagan, Y. et al. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv. Energy Mater. 8, 1801935 (2018).

    Google Scholar 

  25. 25.

    Wang, J. et al. Highly efficient perovskite solar cells using non-toxic industry compatible solvent system. Sol. RRL 1, 1700091 (2017).

    Google Scholar 

  26. 26.

    Liu, X., Wu, J., Yang, Y., Wu, T. & Guo, Q. Pyridine solvent engineering for high quality anion–cation-mixed hybrid and high performance of perovskite solar cells. J. Power Sources 399, 144–150 (2018).

    CAS  Google Scholar 

  27. 27.

    Babaei, A. et al. Hansen theory applied to the identification of nonhazardous solvents for hybrid perovskite thin-films processing. Polyhedron 147, 9–14 (2018).

    CAS  Google Scholar 

  28. 28.

    Noel, N. K. et al. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 10, 145–152 (2017).

    CAS  Google Scholar 

  29. 29.

    Zhi, L. et al. Perovskite solar cells fabricated by using an environmental friendly aprotic polar additive of 1,3-dimethyl-2-imidazolidinone. Nanoscale Res. Lett. 12, 632 (2017).

    Google Scholar 

  30. 30.

    Hauschild, M. Z. et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 18, 683–697 (2013).

    CAS  Google Scholar 

  31. 31.

    Rosenbaum, R. K. et al. USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. Int. J. Life Cycle Assess. 16, 710–727 (2011).

    CAS  Google Scholar 

  32. 32.

    Saouter, E., Biganzoli, F., Pant, R., Sala, S. & Versteeg, D. Using REACH for the EU environmental footprint: building a usable ecotoxicity database, part I. Integr. Environ. Assess. Manag. 15, 783–795 (2019).

    CAS  Google Scholar 

  33. 33.

    Capello, C., Fischer, U. & Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green. Chem. 9, 927–934 (2007).

    CAS  Google Scholar 

  34. 34.

    Hamill, J. C., Schwartz, J. & Loo, Y. L. Influence of solvent coordination on hybrid organic–inorganic perovskite formation. ACS Energy Lett. 3, 92–97 (2018).

    CAS  Google Scholar 

  35. 35.

    Gutmann, V. Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21, 661–670 (1976).

    CAS  Google Scholar 

  36. 36.

    Bruening, K. & Tassone, C. J. Antisolvent processing of lead halide perovskite thin films studied by in situ X-ray diffraction. J. Mater. Chem. A 6, 18865–18870 (2018).

    CAS  Google Scholar 

  37. 37.

    Cao, X. et al. A review of the role of solvents in formation of high-quality solution-processed perovskite films. ACS Appl. Mater. Interfaces 11, 7639–7654 (2019).

    CAS  Google Scholar 

  38. 38.

    Jung, K., Chae, W.-S., Park, Y. C., Kim, J. & Lee, M.-J. Influence of Lewis base HMPA on the properties of efficient planar MAPbI3 solar cells fabricated by one-step process assisted by Lewis acid–base adduct approach. Chem. Eng. J. 380, 122436 (2020).

    CAS  Google Scholar 

  39. 39.

    Gao, L. L., Zhang, K. J., Chen, N. & Yang, G. J. Boundary layer tuning induced fast and high performance perovskite film precipitation by facile one-step solution engineering. J. Mater. Chem. A 5, 18120–18127 (2017).

    CAS  Google Scholar 

  40. 40.

    Belaissaoui, B., Le Moullec, Y. & Favre, E. Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: a generic approach. Energy 95, 291–302 (2016).

    CAS  Google Scholar 

  41. 41.

    Wu, J. J., Muruganandham, M. & Chen, S. H. Degradation of DMSO by ozone-based advanced oxidation processes. J. Hazard. Mater. 149, 218–225 (2007).

    CAS  Google Scholar 

  42. 42.

    ecoinvent Database (ecoinvent, accessed 27 September 2019); https://www.ecoinvent.org/references/references.html

  43. 43.

    Masi, S. et al. Chemi-structural stabilization of formamidinium lead iodide perovskite by using embedded quantum dots. ACS Energy Lett. 5, 418–427 (2020).

  44. 44.

    Bruening, K. et al. Scalable fabrication of perovskite solar cells to meet climate targets. Joule 2, 2464–2476 (2018).

    CAS  Google Scholar 

  45. 45.

    Rosenbaum, R. et al. USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int. J. Life Cycle Assess. 13, 532–546 (2008).

    CAS  Google Scholar 

  46. 46.

    Fantke, P. (ed.) USEtox 2.0 User Manual Version 2 (USEtox Team, 2015).

  47. 47.

    Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).

    Google Scholar 

  48. 48.

    QSAR Toolbox v.4.3.1 (OECD, 2019).

  49. 49.

    Estimation Programs Interface Suite for Microsoft Windows v.4.11 (US EPA, 2017).

  50. 50.

    Card, M. L. et al. History of EPI SuiteTM and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments. Environ. Sci. Process. Impacts 19, 203–212 (2017).

    CAS  Google Scholar 

  51. 51.

    Müller, N., de Zwart, D., Hauschild, M., Kijko, G. & Fantke, P. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment. Environ. Toxicol. Chem. 36, 492–500 (2017).

    Google Scholar 

  52. 52.

    Igos, E. et al. Development of USEtox characterisation factors for dishwasher detergents using data made available under REACH. Chemosphere 100, 160–166 (2014).

    CAS  Google Scholar 

  53. 53.

    Aurisano, N., Albizzati, P. F., Hauschild, M. & Fantke, P. Extrapolation factors for characterizing freshwater ecotoxicity effects. Environ. Toxicol. Chem. 38, 2568–2582 (2019).

  54. 54.

    Gustavsson, M. B., Hellohf, A. & Backhaus, T. Evaluating the environmental hazard of industrial chemicals from data collected during the REACH registration process. Sci. Total Environ. 586, 658–665 (2017).

    CAS  Google Scholar 

  55. 55.

    Global Burden of Disease Study 2017 (GBD 2017) Data Resources (IHME, accessed 11 November 2019); http://ghdx.healthdata.org/gbd-2017

  56. 56.

    Pask, F. et al. Systematic approach to industrial oven optimisation for energy saving. Appl. Therm. Eng. 71, 72–77 (2014).

    Google Scholar 

  57. 57.

    Nikolaychik, L. V. Modeling the drying process of thin coatings. In IS&T’s 50th Annual Conference (ed. Brandenburg, E.) 502–507 (The Society for Imaging Science and Technology, 1997).

  58. 58.

    NIST Standard Reference Database (NIST Chemistry WebBook, 2017); https://doi.org/10.18434/T4D303

  59. 59.

    Gooding, C. H. in Encyclopedia of Chemical Processing and Design Vol. 22 (ed. Mcketta, J. J.) 162–164 (Marcel Dekker, 1985).

  60. 60.

    Joback, K. G. & Reid, R. C. Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987).

    CAS  Google Scholar 

  61. 61.

    Poling, B. E., Prausnitz, J. M. & O’Connell, J. The Properties of Gases and Liquids (McGraw-Hill, 2001).

  62. 62.

    Ge, R., Hardacre, C., Jacquemin, J., Nancarrow, P. & Rooney, D. W. Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. Measurement and prediction. J. Chem. Eng. Data 53, 2148–2153 (2008).

    CAS  Google Scholar 

  63. 63.

    Valderrama, J. O. & Robles, P. A. Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind. Eng. Chem. Res. 46, 1338–1344 (2007).

    CAS  Google Scholar 

  64. 64.

    Avci, A. & Can, M. Analysis of the drying process on unsteady forced convection in thin films of ink. Appl. Therm. Eng. 19, 641–657 (1999).

    CAS  Google Scholar 

  65. 65.

    Lugg, G. A. Diffusion coefficients of some organic and other vapors in air. Anal. Chem. 40, 1072–1077 (1968).

    CAS  Google Scholar 

  66. 66.

    Tang, M. J., Shiraiwa, M., Pöschl, U., Cox, R. A. & Kalberer, M. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations. Atmos. Chem. Phys. 15, 5585–5598 (2015).

    CAS  Google Scholar 

  67. 67.

    Mirkhani, S. A., Gharagheizi, F. & Sattari, M. A QSPR model for prediction of diffusion coefficient of non-electrolyte organic compounds in air at ambient condition. Chemosphere 86, 959–966 (2012).

    CAS  Google Scholar 

  68. 68.

    Zúñiga-Moreno, A. & Galicia-Luna, L. A. Compressed liquid densities and excess volumes for the binary system CO2 + N,N-dimethylformamide (DMF) from (313 to 363) K and pressures up to 25 MPa. J. Chem. Eng. Data 50, 1224–1233 (2005).

    Google Scholar 

  69. 69.

    Schaffner, K., Bradley, K., Randall, D. & Sorrels, J. L. EPA Air Pollution Control Cost Manual (ed. Mussati, D. C.) Ch. 2 (US EPA, 2017).

  70. 70.

    Kroenlein, K. et al. NIST/TRC Web Thermo Tables (WTT) (NIST, accessed 26 November 2019); https://wtt-pro.nist.gov/wtt-pro/#default/B;50,50/A;0,0,508,422;help,about/

  71. 71.

    Doka, G. Life Cycle Inventories of Waste Treatment Services ecoinvent report no. 13 (Swiss Centre for Life Inventories, 2003).

  72. 72.

    SimaPro: The World’s Leading LCA Software (PRé Consultants, 2019); https://simapro.com/

  73. 73.

    Capello, C., Hellweg, S., Badertscher, B. & Hungerbühler, K. Life-cycle inventory of waste solvent distillation: statistical analysis of empirical data. Environ. Sci. Technol. 39, 5885–5892 (2005).

    CAS  Google Scholar 

  74. 74.

    Guo, L., Wang, O., Zhao, D., Gan, X. & Liu, H. The deposition of (CH3NH3)2Pb(SCN)2I2 thin films and their application in perovskites solar cells. Polyhedron 145, 16–21 (2018).

    CAS  Google Scholar 

  75. 75.

    Wang, B., Wong, K. Y., Yang, S. & Chen, T. Crystallinity and defect state engineering in organo-lead halide perovskite for high-efficiency solar cells. J. Mater. Chem. A 4, 3806–3812 (2016).

    CAS  Google Scholar 

  76. 76.

    Park, B. W. et al. Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. J. Mater. Chem. A 3, 21760–21771 (2015).

    CAS  Google Scholar 

  77. 77.

    Xie, L., Cho, A.-N., Park, N.-G. & Kim, K. Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive. ACS Appl. Mater. Interfaces 10, 9390–9397 (2018).

    CAS  Google Scholar 

  78. 78.

    Lee, J. W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from Generalitat Valenciana (Spain) under Project Q-Devices PROMETEO/2018/098. R.V. was partially supported by an International Academic Fellowship from Ministerio de Ciencia, Innovación y Universidades (Spain) and reference PRX19/00378, which permitted a research visit to the National Renewable Laboratory of Energy (NREL). This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy for the US Department of Energy (DOE) under contract no. DE-AC36-08GO28308. Funding for work at NREL was provided by DOE Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office under the De-risking Halide Perovskite Solar Cells Program and based upon work under agreement no. DE-EE0008174. T.H.S. acknowledges the Department of Chemistry and the Office of Graduate Studies at the Colorado School of Mines for financial support. We thank B. Kazaishvili for assistance with graphics and R. Kerner for helpful discussions. The views expressed in the article do not necessarily represent the views of the DOE or the US government.

Author information

Affiliations

Authors

Contributions

R.V., J.J.B. and J.M.L. designed the study. R.V. and J.M.L. wrote the manuscript. R.V. performed the analysis. J.A.A.B. modelled DMPU and DMI reaction synthesis. J.L.G.M. assembled life cycle inventories. D.T.M. reviewed solvent removal. J.M.L., D.T.M. and T.H.S. determined solvent selection. I.M.-S. and S.N.H. assisted in the work analysis.

Corresponding authors

Correspondence to Rosario Vidal or Joseph M. Luther.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Sustainability thanks Youn-Joo An, Nam-Gyu Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Tables 1–25, Figs. 1–4, Schemes 1,2 and refs. 1–102.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vidal, R., Alberola-Borràs, JA., Habisreutinger, S.N. et al. Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat Sustain (2020). https://doi.org/10.1038/s41893-020-00645-8

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing