Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding the role of illicit transactions in land-change dynamics

Abstract

Anthropogenic land use has irrevocably transformed the natural systems on which humankind relies. Advances in remote sensing have led to an improved understanding of where, why and how social and economic processes drive globally important land-use changes, from deforestation to urbanization. The role of illicit activities, however, is often absent in land change analysis. The paucity of data on unrecorded, intentionally hidden transactions makes them difficult to incorporate into spatially specific analyses of land change. We present a conceptual framework of illicit land transactions and a two-pronged approach using remotely sensed data to spatially link illicit activities to land uses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Adding illicit transactions into an action arena for land use (following refs. 6,12).
Fig. 2: Two approaches to address illicit land transactions involving remote sensing data.

References

  1. 1.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  2. 2.

    Global Environment Outlook — GEO-6: Summary for Policymakers (UNEP, 2019).

  3. 3.

    Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  4. 4.

    IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems (IPCC, 2019).

  5. 5.

    Zhou, B. B., Wu, J. & Anderies, J. M. Sustainable landscapes and landscape sustainability: a tale of two concepts. Landsc. Urban Plan. 189, 274–284 (2019).

    Article  Google Scholar 

  6. 6.

    Turner II, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl Acad. Sci. USA 104, 20666–20671 (2007).

    Article  Google Scholar 

  7. 7.

    Chowdhury, R. R. & Turner, B. L. II The parallel trajectories and increasing integration of landscape ecology and land system science. J. Land Use Sci. 14, 135–154 (2019).

    Article  Google Scholar 

  8. 8.

    Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Chang. 53, 52–67 (2018).

    Article  Google Scholar 

  9. 9.

    Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).

    Article  Google Scholar 

  10. 10.

    Pongratz, J. et al. Models meet data: challenges and opportunities in implementing land management in Earth system models. Glob. Change Biol. 24, 1470–1487 (2018).

    Article  Google Scholar 

  11. 11.

    Verburg, P. H. et al. Beyond land cover change: towards a new generation of land use models. Curr. Opin. Environ. Sustain. 38, 77–85 (2019).

    Article  Google Scholar 

  12. 12.

    Ostrom, E. Background on the institutional analysis and development framework. Policy Stud. J. 39, 7–27 (2011).

    Article  Google Scholar 

  13. 13.

    Uslaner, E. M. Corruption, Inequality, and the Rule of Law: The Bulging Pocket Makes the Easy Life (Cambridge Univ. Press, 2008).

  14. 14.

    Buruma, Y. Dutch tolerance: on drugs, prostitution, and euthanasia. Crime Justice 73, 73–114 (2007).

    Article  Google Scholar 

  15. 15.

    Lawson, S. et al. Consumer Goods and Deforestation: An Analysis of the Extent and Nature of Illegality in Forest Conversion for Agriculture and Timber Plantations (Forest Trends, 2014).

  16. 16.

    Burgess, R., Hansen, M. & Olken, B. A, Potapov, P. & Sieber, S. The political economy of deforestation in the Tropics. Q. J. Econ. 2001, 1–48 (2012).

    Google Scholar 

  17. 17.

    Pailler, S. Re-election incentives and deforestation cycles in the Brazilian Amazon. J. Environ. Econ. Manag. 88, 345–365 (2018).

    Article  Google Scholar 

  18. 18.

    Weinstein, L. Mumbai’s development mafias: globalization, organized crime and land development. Int. J. Urban Reg. Res. 32, 22–39 (2008).

    Article  Google Scholar 

  19. 19.

    Jaafar, H. H. & Woertz, E. Agriculture as a funding source of ISIS: a GIS and remote sensing analysis. Food Pol. 64, 14–25 (2016).

    Article  Google Scholar 

  20. 20.

    Mcsweeney, K. et al. Drug policy as conservation policy: narco-deforestation. Science 343, 489–490 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Wolford, W., Borras, S. M., Hall, R., Scoones, I. & White, B. Governing global land deals: the role of the state in the rush for land. Dev. Change 44, 189–210 (2013).

    Article  Google Scholar 

  22. 22.

    Galaz, V. et al. Tax havens and global environmental degradation. Nat. Ecol. Evol. 2, 1352–1357 (2018).

    Article  Google Scholar 

  23. 23.

    Gore, M. L. et al. Transnational environmental crime threatens sustainable development. Nat. Sustain. 2, 784–786 (2019).

    Article  Google Scholar 

  24. 24.

    North, D. C. Institutions, Institutional Change and Economic Performance (Cambridge Univ. Press, 1990).

  25. 25.

    Satija, N., Collier, K. & Shaw, A. Everyone knew houston’s reservoirs would flood — except for the people who bought homes inside them. The Texas Tribune (October 2017).

  26. 26.

    Chiodelli, F. The illicit side of urban development: corruption and organised crime in the field of urban planning. Urban Stud. 56, 1611–1627 (2019).

    Article  Google Scholar 

  27. 27.

    Andreas, P. International politics and the illicit global economy. Perspect. Polit. 13, 782–788 (2015).

    Article  Google Scholar 

  28. 28.

    Armantier, O. & Boly, A. A controlled field experiment on corruption. Eur. Econ. Rev. 55, 1072–1082 (2011).

    Article  Google Scholar 

  29. 29.

    Fredriksson, P. G. & Neumayer, E. Corruption and climate change policies: do the bad old days matter? Environ. Resour. Econ. 63, 451–469 (2016).

    Article  Google Scholar 

  30. 30.

    della Porta, D. & Vannucci, A. in The New Institutional Economics of Corruption (eds Lambsdorff, J. G. et al.) Ch. 9 (Routledge, 2005).

  31. 31.

    O’Malley, P. in The SAGE Handbook of Criminological Theory (eds McLaughlin, E. & Newburn, T.) 319–336 (SAGE, 2010).

  32. 32.

    Karstedt, S. in SAGE Handbook of Criminological Theory (eds McLaughlin, E. & Newburn, T.) 337–359 (SAGE, 2010).

  33. 33.

    Carter, N. H. et al. A conceptual framework for understanding illegal killing of large carnivores. AmBio 46, 251–264 (2017).

  34. 34.

    Gibbs, C., Gore, M. L., McGarrell, E. F. & Rivers, L. Introducing conservation criminology towards interdisciplinary scholarship on environmental crimes and risks. Br. J. Criminol. 50, 124–144 (2010).

    Article  Google Scholar 

  35. 35.

    Roy, A. Urban informality: toward an epistemology of planning. J. Am. Plan. Assoc. 71, 147–158 (2005).

    Article  Google Scholar 

  36. 36.

    Gregson, N. & Crang, M. Illicit economies: customary illegality, moral economies and circulation. Trans. Inst. Br. Geogr. 42, 206–219 (2017).

    Article  Google Scholar 

  37. 37.

    Gore, M. L., Ratsimbazafy, J. & Lute, M. L. Rethinking corruption in conservation crime: insights from Madagascar. Conserv. Lett. 6, 430–438 (2013).

    Article  Google Scholar 

  38. 38.

    Ahmed, I., Ayeb-Karlsson, S., van der Geest, K., Huq, S. & Jordan, J. C. Climate change, environmental stress and loss of livelihoods can push people towards illegal activities: a case study from coastal Bangladesh. Clim. Dev. 11, 907–917 (2019).

    Article  Google Scholar 

  39. 39.

    Avelino, F. & Rotmans, J. Power in transition: an interdisciplinary framework to study power in relation to structural change. Eur. J. Soc. Theory 12, 543–569 (2009).

    Article  Google Scholar 

  40. 40.

    Basu, G. Concealment, corruption, and evasion: a transaction cost and case analysis of illicit supply chain activity. J. Transp. Secur. 7, 209–226 (2014).

    Article  Google Scholar 

  41. 41.

    Grandia, L. Road mapping: megaprojects and land grabs in the Northern Guatemalan lowlands. Dev. Change 44, 233–259 (2013).

    Article  Google Scholar 

  42. 42.

    Hausermann, H. et al. Land-grabbing, land-use transformation and social differentiation: deconstructing ‘small-scale’ in Ghana’s recent gold rush. World Dev. 108, 103–114 (2018).

    Article  Google Scholar 

  43. 43.

    Devine, J., Wrathall, D., Currit, N., Tellman, B. & Langarica, Y. Narco-cattle ranching in political forests. Antipode https://doi.org/10.1111/anti.12469 (2018).

  44. 44.

    Holland, A. C. Forbearance. Am. Polit. Sci. Rev. 110, 232–246 (2016).

    Article  Google Scholar 

  45. 45.

    Watts, J. Madagascar’s vanilla wars: prized spice drives death and deforestation. The Guardian (31 March 2018).

  46. 46.

    Nolte, C. Identifying challenges to enforcement in protected areas: empirical insights from 15 Colombian parks. Oryx 50, 317–322 (2016).

    Article  Google Scholar 

  47. 47.

    Hall, T. Geographies of the illicit: globalization and organized crime. Prog. Hum. Geogr. 37, 366–385 (2012).

    Article  Google Scholar 

  48. 48.

    Geoghegan, J. in People and Pixels: Linking Remote Sensing and Social Science 51–69 (National Academies, 1998).

  49. 49.

    Sánchez-Cuervo, A. M., Aide, T. M., Clark, M. L. & Etter, A. Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010. PLoS ONE 7, e43943 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    Dávalos, L. M. et al. Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots. Environ. Sci. Technol. 45, 1219–1277 (2011).

    Article  CAS  Google Scholar 

  51. 51.

    Allison, P. Fixed Effects Regression Models 7–27 (SAGE, 2009).

  52. 52.

    Bell, A. & Jones, K. Explaining fixed effects: random effects modeling of time-series cross-sectional and panel data. Polit. Sci. Res. Methods 3, 133–153 (2015).

    Article  Google Scholar 

  53. 53.

    Siriwat, P. & Nijman, V. Using online media-sourced seizure data to assess the illegal wildlife trade in Siamese rosewood. Environ. Conserv. 45, 419–424 (2018).

    Article  Google Scholar 

  54. 54.

    Blackman, A., Corral, L., Lima, E. S. & Asner, G. P. Titling indigenous communities protects forests in the Peruvian Amazon. Proc. Natl Acad. Sci. USA 114, 4123–4128 (2017).

    CAS  Article  Google Scholar 

  55. 55.

    Wright, G. D., Andersson, K. P., Gibson, C. C. & Evans, T. P. Decentralization can help reduce deforestation when user groups engage with local government. Proc. Natl Acad. Sci. USA 113, 14958–14963 (2016).

    CAS  Article  Google Scholar 

  56. 56.

    McSweeney, K., Wrathall, D. J., Nielsen, E. A. & Pearson, Z. Grounding traffic: the cocaine commodity chain and land grabbing in eastern Honduras. Geoforum 95, 122–132 (2018).

    Article  Google Scholar 

  57. 57.

    Sesnie, S. et al. A spatio-temporal analysis of forest cover loss related to cocain trafficking in Central America. Environ. Res. Lett. 12, 054015 (2017).

    Article  Google Scholar 

  58. 58.

    Gupta, M., Gao, J., Aggarwal, C. C. & Han, J. Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26, 2250–2267 (2014).

    Article  Google Scholar 

  59. 59.

    Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115 (2010).

    Article  Google Scholar 

  60. 60.

    Wooditch, A. & Weisburd, D. Using space–time analysis to evaluate criminal justice programs: an application to stop-question-frisk practices. J. Quant. Criminol. 32, 191–213 (2016).

    Article  Google Scholar 

  61. 61.

    Groeneveld, J. et al. Theoretical foundations of human decision-making in agent-based land use models — a review. Environ. Model. Softw. 87, 39–48 (2017).

    Article  Google Scholar 

  62. 62.

    Brown, D. G. et al. Advancing Land Change Modeling (National Academies, 2014).

  63. 63.

    Magliocca, N. et al. Modeling cocaine traffickers and counterdrug interdiction forces as a complex adaptive system. Proc. Natl Acad. Sci. USA 116, 7784–7792 (2019).

    CAS  Article  Google Scholar 

  64. 64.

    Sikor, T. & To, P. X. Illegal logging in Vietnam: Lam Tac (forest hijackers) in practice and talk. Soc. Nat. Resour. 24, 688–701 (2011).

    Article  Google Scholar 

  65. 65.

    West, J. & Bhattacharya, M. Intelligent financial fraud detection: a comprehensive review. Comput. Secur. 57, 47–66 (2016).

    Article  Google Scholar 

  66. 66.

    Grupos de Poder en Petén: Territorio, Política y Negocios 208 (InSight-Crime, 2011).

  67. 67.

    How Corrupt Elections Fuel the Sell-Off of Indonesia’s Natural Resources (The Gecko Project, Mongabay, 2018).

  68. 68.

    Armenteras, D., Espelta, J. M., Rodríguez, N. & Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Glob. Environ. Chang. 46, 139–147 (2017).

    Article  Google Scholar 

  69. 69.

    McSweeney, K., Richani, N., Pearson, Z., Devine, J. & Wrathall, D. J. Why do narcos invest in rural land? J. Lat. Am. Geogr. 16, 3–29 (2017).

    Article  Google Scholar 

  70. 70.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  Google Scholar 

  71. 71.

    Tellman, E. Mapping and Modeling Illicit and Clandestine Drivers of Land Use Change: Urban Expansion in Mexico City and Deforestation in Central America (Arizona State Univ., 2019).

  72. 72.

    Liu, Y. et al. Social sensing: a new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 105, 512–530 (2015).

    Article  Google Scholar 

  73. 73.

    Reporters Without Borders 2018 Report (Reporters without Borders, 2018).

  74. 74.

    Neimark, B. Address the roots of environmental crime. Science 364, 139 (2019).

    Google Scholar 

  75. 75.

    Kitchin, R. The real-time city? Big data and smart urbanism. GeoJournal 79, 1–14 (2014).

    Article  Google Scholar 

  76. 76.

    Turner, B. L. & Robbins, P. Land-change science and political ecology: similarities, differences, and implications for sustainability science. Annu. Rev. Environ. Resour. 33, 295–316 (2008).

    Article  Google Scholar 

  77. 77.

    Toth, A. G. & Mitchell, O. A qualitative examination of the effects of international counter-drug interdictions. Int. J. Drug Policy 55, 70–76 (2018).

    Article  Google Scholar 

  78. 78.

    Rege, A. Not biting the dust: using a tripartite model of organized crime to examine India’s Sand Mafia. Int. J. Comp. Appl. Crim. Justice 40, 101–121 (2016).

    Article  Google Scholar 

  79. 79.

    Magliocca, N. R., Khuc, Q., Van, Ellicott, E. A. & de Bremond, A. Archetypical pathways of direct and indirect land-use change caused by Cambodia’s economic land concessions. Ecol. Soc. 24, 25 (2019).

    Article  Google Scholar 

  80. 80.

    Aguilar, A. G. Peri-urbanization, illegal settlements and environmental impact in Mexico City. Cities 25, 133–145 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Benessaiah, D. Wrathall, K. McSweeney, S. Sesnie, J. Sullivan, A. Endsley, A. Agrawal, V. Galaz, J. T Erbaugh, and H. Eakin, who provided comments on this manuscript. We also thank the participants of the 2017 AAG sessions on Clandestine Land Transactions, whose research inspired this piece and is cited within. An earlier version of this Perspective was published as a panel contribution to the Population–Environment Research Network Cyberseminar, ‘People and Pixels Revisited’ (20–27 February 2018) (https://populationenvironmentresearch.org/cyberseminars/10516). Funding was provided by the National Science Foundation Doctoral Dissertation Research Improvement (grant no. 1657773) and the National Science Foundation Early-Concept Grants for Exploratory Research Project ISN (grant no. 1837698).

Author information

Affiliations

Authors

Contributions

B.T. and B.L.T. II conceived of the original idea, N.R.M. contributed to substantial reframing and conceptual figures, and all authors wrote and commented on the paper.

Corresponding author

Correspondence to Beth Tellman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tellman, B., Magliocca, N.R., Turner, B.L. et al. Understanding the role of illicit transactions in land-change dynamics. Nat Sustain 3, 175–181 (2020). https://doi.org/10.1038/s41893-019-0457-1

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing