Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How transit scaling shapes cities

Abstract

Transit accessibility to jobs (the ease of reaching a place of work by public transport) affects both residential location and commute mode choice, resulting in gradations of residential land-use intensity and transit (public transport) patronage. We propose a scaling model explaining much of the variation in transit use—the number of transit commuters per km2—and residential land-use intensity with transit accessibility. We find that locations with high transit accessibility consistently have more riders and higher residential density; transit systems that provide greater accessibility and with a larger base for patronage have proportionally greater ridership increase per unit of accessibility. All 48 metropolitan statistical areas in our sample have a scaling factor less than 1, so a 1% increase in access to jobs produces a less than 1% increase in transit riders; the largest cities therefore have higher scaling factors than smaller cities, indicating returns to scale. The models, derived from a new database of transit accessibility measured for every minute of the peak period over 11 million US census-blocks, and estimated for 48 major cities across the United States, find that the number of jobs reachable within 45 minutes of the rider’s base most affect transit rider density. The findings support the idea that transit investment should focus on mature, well-developed regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Scaling coefficients for transit commuter and working population density.
Fig. 2: Transit use trend estimation based on two scaling models of transit accessibility (45 min).
Fig. 3: Commuter density and transit accessibility to jobs.

Data availability

The transit accessibility data are obtained from the Accessibility Observatory at the University of Minnesota. Block-group accessibility measures are population weighted averages of constituent block values to match the spatial reporting of the mode share data from the US Census Bureau. Working population characteristics come from the 2016 American Community Survey and Longitudinal Employer-Household Dynamics programme’s 2015 Origin-Destination Employment Statistics65,66. Data on mode share are obtained from the 2016 American Community Survey 5 yr estimates which describes commute mode choice between 2012 and 2016. Transit is defined to include walking, ferry, rail (subway and commuter), and bus, trolley and streetcar. Data described in this section are available via public websites.

References

  1. 1.

    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).

    Article  CAS  Google Scholar 

  2. 2.

    Louf, R. & Barthelemy, M. How congestion shapes cities: from mobility patterns to scaling. Sci. Rep. 4, 5561 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    Depersin, J. & Barthelemy, M. From global scaling to the dynamics of individual cities. Proc. Natl Acad. Sci. USA 115, 2317–2322 (2018).

    Article  CAS  Google Scholar 

  4. 4.

    Samaniego, H. & Moses, M. E. Cities as organisms: allometric scaling of urban road networks. J. Transp. Land Use 1, 21–39 (2008).

    Article  Google Scholar 

  5. 5.

    Levinson, D. Network structure and city size. PLoS ONE 7, e29721 (2012).

    Article  CAS  Google Scholar 

  6. 6.

    Bettencourt, L. M. The origins of scaling in cities. Science 340, 1438–1441 (2013).

    Article  CAS  Google Scholar 

  7. 7.

    Merlin, L. A. A portrait of accessibility change for four US metropolitan areas. J. Transp. Land Use 10, 309–336 (2017).

    Google Scholar 

  8. 8.

    Jones, C. & Kammen, D. M. Spatial distribution of us household carbon footprints reveals suburbanization undermines greenhouse gas benefits of urban population density. Environ. Sci. Technol. 48, 895–902 (2014).

    Article  CAS  Google Scholar 

  9. 9.

    Sovacool, B. K. & Brown, M. A. Twelve metropolitan carbon footprints: a preliminary comparative global assessment. Energy Policy 38, 4856–4869 (2010).

    Article  Google Scholar 

  10. 10.

    Marshall, J. D. Reducing urban sprawl could play an important role in addressing climate change. Environ. Sci. Technol. 42, 3133–3137 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    Bruun, E. & Givoni, M. Sustainable mobility: six research routes to steer transport policy. Nat. News 523, 29–31 (2015).

    Article  CAS  Google Scholar 

  12. 12.

    Song, S. Modelling worker residence distribution in the Los Angeles region. Urban Stud. 31, 1533–1544 (1994).

    Article  Google Scholar 

  13. 13.

    Weisbrod, G., Lerman, S. R. & Ben-Akiva, M. Tradeoffs in residential location decisions: Transportation versus other factors. Transp. Policy Decis. Mak. 1, 13–26 (1980).

    Google Scholar 

  14. 14.

    Zondag, B. & Pieters, M. Influence of accessibility on residential location choice. Transp. Res. Rec. 1902, 63–70 (2005).

    Article  Google Scholar 

  15. 15.

    Schwanen, T. & Mokhtarian, P. L. What affects commute mode choice: neighborhood physical structure or preferences toward neighborhoods? J. Transp. Geogr. 13, 83–99 (2005).

    Article  Google Scholar 

  16. 16.

    Ewing, R. & Cervero, R. Travel and the built environment: a synthesis. Transp. Res. Rec. 1780, 87–114 (2001).

    Article  Google Scholar 

  17. 17.

    Cervero, R. Traditional neighborhoods and commuting in the San Francisco bay area. Transportation 23, 373–394 (1996).

    Article  Google Scholar 

  18. 18.

    Renne, J. L., Hamidi, S. & Ewing, R. Transit commuting, the network accessibility effect, and the built environment in station areas across the United States. Res. Transp. Econ. 60, 35–43 (2016).

    Article  Google Scholar 

  19. 19.

    Cervero, R., Murakami, J. & Miller, M. Direct ridership model of bus rapid transit in Los Angeles County, California. Transp. Res. Rec. 2145, 1–7 (2010).

    Article  Google Scholar 

  20. 20.

    Sun, L., Jin, J. G., Axhausen, K. W., Lee, D.-H. & Cebrian, M. Quantifying long-term evolution of intra-urban spatial interactions. J. R. Soc. Inter. 12, 20141089 (2015).

    Article  Google Scholar 

  21. 21.

    Levinson, D. M. Density and dispersion: the co-development of land use and rail in London. J. Econ. Geogr. 8, 55–77 (2008).

    Google Scholar 

  22. 22.

    Xie, F. & Levinson, D. M. How streetcars shaped suburbanization: a granger causality analysis of land use and transit in the twin cities. J. Econ. Geogr. 10, 453–470 (2009).

    Article  Google Scholar 

  23. 23.

    King, D. A. Developing densely: Estimating the effect of subway growth on New York City land uses. J. Trans. Land Use 4, 19–32 (2011).

    Google Scholar 

  24. 24.

    Mayor, K., Lyons, S., Duffy, D. & Tol, R. S. A hedonic analysis of the value of rail transport in the Greater Dublin area. J. Transp. Econ. Policy 46, 239–261 (2012).

    Google Scholar 

  25. 25.

    Pan, Q. The impacts of an urban light rail system on residential property values: a case study of the Houston METRORail transit line. Transp. Plan. Technol. 36, 145–169 (2013).

    Article  Google Scholar 

  26. 26.

    Grass, R. G. The estimation of residential property values around transit station sites in Washington, D.C. J. Econ. Finance 16, 139–146 (1992).

    Article  Google Scholar 

  27. 27.

    Cervero, R. & Kang, C. D. Bus rapid transit impacts on land uses and land values in Seoul, Korea. Transp. Policy 18, 102–116 (2011).

    Article  Google Scholar 

  28. 28.

    Giuliano, G., Gordon, P., Pan, Q. & Park, J. Accessibility and residential land values: some tests with new measures. Urban Stud. 47, 3103–3130 (2010).

    Article  Google Scholar 

  29. 29.

    Diao, M. & Ferreira Jr, J. Residential property values and the built environment: empirical study in the Boston, Massachusetts metropolitan area. Transp. Res. Rec. 2174, 138–147 (2010).

    Article  Google Scholar 

  30. 30.

    Bowes, D. R. & Ihlanfeldt, K. R. Identifying the impacts of rail transit stations on residential property values. J. Urban Econ. 50, 1–25 (2001).

    Article  Google Scholar 

  31. 31.

    Glaeser, E. L., Kallal, H. D., Scheinkman, J. A. & Shleifer, A. Growth in cities. J. Polit. Econ. 100, 1126–1152 (1992).

    Article  Google Scholar 

  32. 32.

    Ortman, S. G., Cabaniss, A. H., Sturm, J. O. & Bettencourt, L. M. Settlement scaling and increasing returns in an ancient society. Sci. Adv. 1, e1400066 (2015).

    Article  Google Scholar 

  33. 33.

    Gallotti, R. & Barthelemy, M. Anatomy and efficiency of urban multimodal mobility. Sci. Rep. 4, 6911 (2014).

    Article  CAS  Google Scholar 

  34. 34.

    Ermagun, A. & Levinson, D. Accessibility and Transit Performance Nexus Working Paper 000129 (University of Minnesota, Nexus Research Group, 2015).

  35. 35.

    Batty, M. Modelling cities as dynamic systems. Nature 231, 425–428 (1971).

    Article  Google Scholar 

  36. 36.

    Makse, H. A., Havlin, S. & Stanley, H. E. Modelling urban growth patterns. Nature 377, 608–612 (1995).

    Article  CAS  Google Scholar 

  37. 37.

    Chumak, A. & Braaksma, J. Implications of the travel time budget for urban transportation modelling in Canada. Transp. Res. 13, 243–257 (1979).

    Article  Google Scholar 

  38. 38.

    Kawabata, M. & Shen, Q. Commuting inequality between cars and public transit: the case of the San Francisco bay area, 1990–2000. Urban Stud. 44, 1759–1780 (2007).

    Article  Google Scholar 

  39. 39.

    American Community Survey Table B08301 (US Census Bureau, 2016); https://go.nature.com/2W6ywLU

  40. 40.

    American Community Survey Table B08136 (US Census Bureau, 2016); https://go.nature.com/33XkGhp

  41. 41.

    Huang, J., Levinson, D., Wang, J., Zhou, J. & Wang, Z. Tracking job and housing dynamics with smartcard data. Proc. Natl Acad. Sci. USA 115, 12710–12715 (2018).

    Article  CAS  Google Scholar 

  42. 42.

    Clark, W. A., Huang, Y. & Withers, S. Does commuting distance matter?: commuting tolerance and residential change. Reg. Sci. Urban Econ. 33, 199–221 (2003).

    Article  Google Scholar 

  43. 43.

    Mogridge, M. J. The self-defeating nature of urban road capacity policy: a review of theories, disputes and available evidence. Transp. Policy 4, 5–23 (1997).

    Article  Google Scholar 

  44. 44.

    Smart, M. J. & Klein, N. J. Remembrance of cars and buses past: how prior life experiences influence travel. J. Plan. Educ. Res. 38, 139–151 (2018).

    Article  Google Scholar 

  45. 45.

    Levinson, D. M. & Krizek, K. J. Metropolitan Transport and Land Use: Planning for Place and Plexus (Routledge, 2018).

  46. 46.

    Bar-Yosef, A., Martens, K. & Benenson, I. A model of the vicious cycle of a bus line. Transp. Res. 54, 37–50 (2013).

    Article  Google Scholar 

  47. 47.

    Mohring, H. Optimization and scale economies in urban bus transportation. Am. Econ. Rev. 62, 591–604 (1972).

    Google Scholar 

  48. 48.

    Nelson, P. Information and consumer behavior. J. Polit. Econ. 78, 311–329 (1970).

    Article  Google Scholar 

  49. 49.

    Owen, A. & Levinson, D. M. Modeling the commute mode share of transit using continuous accessibility to jobs. Transp. Res. Pt A 74, 110–122 (2015).

    Google Scholar 

  50. 50.

    Hansen, W. G. How accessibility shapes land use. J. Am. Instit. Plan. 25, 73–76 (1959).

    Article  Google Scholar 

  51. 51.

    Ingram, D. R. The concept of accessibility: a search for an operational form. Reg. Stud. 5, 101–107 (1971).

    Article  Google Scholar 

  52. 52.

    Wickstrom, G. V. Defining balanced transportation-a question of opportunity. Traffic Quart. 25, 337–349 (1971).

    Google Scholar 

  53. 53.

    Wachs, M. & Kumagai, T. G. Physical accessibility as a social indicator. Socio-econ. Plan. Sci. 7, 437–456 (1973).

    Article  Google Scholar 

  54. 54.

    Merlin, L. A. & Hu, L. Does competition matter in measures of job accessibility? Explaining employment in Los Angeles. J. Transp. Geogr. 64, 77–88 (2017).

    Article  Google Scholar 

  55. 55.

    Xu, W., Zhang, W. & Li, L. Measuring the expected locational accessibility of urban transit network for commuting trips. Transp. Res. Pt D 51, 62–81 (2017).

    Article  Google Scholar 

  56. 56.

    Xu, W., Li, Y. & Wang, H. Transit accessibility for commuters considering the demand elasticities of distance and transfer. J. Trans. Geogr. 56, 138–156 (2016).

    Article  Google Scholar 

  57. 57.

    Batty, M. Accessibility: in search of a unified theory. Environ. Plan. 36, 191–194 (2009).

    Article  Google Scholar 

  58. 58.

    Xi, Y., Miller, E. J. & Saxe, S. Exploring the impact of different cut-off times on isochrone measurements of accessibility. Transp. Res. Rec. 2672, 113–124 (2018).

    Article  Google Scholar 

  59. 59.

    Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970).

    Article  Google Scholar 

  60. 60.

    Miller, H. J. Tobler’s first law and spatial analysis. Ann. Am. Assoc. Geogr. 94, 284–289 (2004).

    Article  Google Scholar 

  61. 61.

    Geurs, K. T. & Ritsema van Eck, J. R. Accessibility measures: review and applications. evaluation of accessibility impacts of land-use transportation scenarios, and related social and economic impact. Environ. Plan. 30, 69–87 (2001).

  62. 62.

    Reggiani, A., Bucci, P. & Russo, G. Accessibility and impedance forms: empirical applications to the german commuting network. Inter. Reg. Sci. Rev. 34, 230–252 (2011).

    Article  Google Scholar 

  63. 63.

    Huang, A. & Levinson, D. Axis of travel: modeling non-work destination choice with gps data. Transp. Res. Pt C 58, 208–223 (2015).

    Article  Google Scholar 

  64. 64.

    Levinson, D. & Kumar, A. Multi-modal trip distribution model. Transp. Res. Rec. 1466, 124–131 (1994).

    Google Scholar 

  65. 65.

    Horner, M. W. & Schleith, D. Analyzing temporal changes in land-use–transportation relationships: a LEHD-based approach. Appl. Geogr. 35, 491–498 (2012).

    Article  Google Scholar 

  66. 66.

    Graham, M. R., Kutzbach, M. J. & McKenzie, B. Design Comparison of LODES and ACS Commuting Data Products Working Paper 14-38 (Center for Economic Studies, US Census Bureau, 2014).

Download references

Acknowledgements

We thank the Accessibility Observatory at the University of Minnesota for the provision of data.

Author information

Affiliations

Authors

Contributions

D.L. created the study conception and design, H.W. and S.S. analysed and intepreted the results and H.W. prepared the manuscript.

Corresponding author

Correspondence to Hao Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–2, Tables 1–2 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Levinson, D. & Sarkar, S. How transit scaling shapes cities. Nat Sustain 2, 1142–1148 (2019). https://doi.org/10.1038/s41893-019-0427-7

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing