Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Temporal patterns of adoption of mariculture innovation globally


Mariculture—farming seafood in the ocean—has been expanding in many countries and has the potential to be a critical component of a sustainable global food system. However, it has developed inconsistently across the globe, with minimal development in some regions, while in others intensive growth threatens sustainability. There is no overall understanding of trajectories of mariculture development around the world. We analyse mariculture development trends at the country level, drawing on diffusion of innovation theory. We show that most countries follow predictable patterns of development that are associated with key economic and governance indicators, such as regulatory quality. We also show that production of some taxa (for example, molluscs) is more strongly associated with stable production over time, as is growing a diversity of species. Taken together, our results suggest that enabling policies may unlock mariculture growth opportunities and that strategies that emphasize production of a diversity of species could contribute to a more stable mariculture industry. Further, by assessing each country’s trajectory of mariculture development in relation to its production potential, we consider the limits and opportunities for future mariculture growth and its contribution to sustainable food systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Examples of production curves for each curve category.
Fig. 2: The number of species produced per country by curve category.
Fig. 3: The mean indicator value for each of the six World Governance indicators by curve category.
Fig. 4: The relationship between current marine fish production and a conservative estimate of fish production potential for countries categorized as stable or increasing and for which potential production data are available.

Data availability

All data used in this paper are publicly available and can be accessed through:;;;; and Figure 1 uses raw aquaculture production data downloaded from


  1. 1.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All (FAO, 2016).

  3. 3.

    Gentry, R. R. et al. Offshore aquaculture: spatial planning principles for sustainable development. Ecol. Evol. 7, 733–743 (2017).

    Article  Google Scholar 

  4. 4.

    Price, C. S. & Morris, J. A. J. Marine Cage Culture & The Environment: Twenty-first Century Science Informing a Sustainable Industry (NOAA Technical Memorandum NOS NCCOS, 2013).

  5. 5.

    Alleway, H. K. et al. The ecosystem services of marine aquaculture: valuing benefits to nature and people. BioScience 69, 59–68 (2019).

    Article  Google Scholar 

  6. 6.

    Marschke, M. & Betcherman, G. Vietnam’s seafood boom: economic growth with impoverishment? Environ. Dev. Sustain. 18, 1129–1150 (2016).

    Article  Google Scholar 

  7. 7.

    Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquac. (2019).

  8. 8.

    Lovatelli, A., Aguilar-Manjarrez, J. & Soto, D. (eds) Expanding Mariculture Farther Offshore: Technical, Environmental, Spatial and Governance Challenges FAO Technical Workshop 2010, FAO Fisheries and Aquaculture Proceedings No. 24 (FAO, 2013).

  9. 9.

    Merino, G. et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Change 22, 795–806 (2012).

    Article  Google Scholar 

  10. 10.

    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    Article  Google Scholar 

  11. 11.

    Sanchez-Jerez, P. et al. Aquaculture’s struggle for space: the need for coastal spatial planning and the potential benefits of Allocated Zones for Aquaculture (AZAs) to avoid conflict and promote sustainability. Aquac. Environ. Interact. 8, 41–54 (2016).

    Article  Google Scholar 

  12. 12.

    Rimmer, M. A., Sugama, K., Rakhmawati, D., Rofiq, R. & Habgood, R. H. A review and SWOT analysis of aquaculture development in Indonesia. Rev. Aquac. 5, 255–279 (2013).

    Article  Google Scholar 

  13. 13.

    Morrill, R. L. Waves of spatial diffusion. J. Reg. Sci. 8, 1–18 (1968).

    Article  Google Scholar 

  14. 14.

    Joffre, O. M., Klerkx, L., Dickson, M. & Verdegem, M. How is innovation in aquaculture conceptualized and managed? A systematic literature review and reflection framework to inform analysis and action. Aquaculture 470, 129–148 (2017).

    Article  Google Scholar 

  15. 15.

    Ryan, B. & Gross, N. The diffusion of hybrid seed corn in two Iowa communities. Rural Sociol. 8, 15–24 (1943).

    Google Scholar 

  16. 16.

    Rogers, E. M. A prospective and retrospective look at the diffusion model. J. Health Commun. 9, 13–19 (2004).

    Article  Google Scholar 

  17. 17.

    Dearing, J. W. Applying diffusion of innovation theory to intervention development. Res. Soc. Work Pract. 19, 503–518 (2009).

    Article  Google Scholar 

  18. 18.

    Padel, S. Conversion to organic farming: a typical example of the diffusion of an innovation? Sociol. Ruralis 41, 40–61 (2001).

    Article  Google Scholar 

  19. 19.

    Adjei, P. O. W., Kosoe, E. A. & Forkuor, D. Facts behind the myth of conservative rurality: major determinants of rural farmers’ innovation adoption decisions for sustainable agriculture. GeoJournal 82, 1051–1066 (2017).

    Article  Google Scholar 

  20. 20.

    Orr, A. Markets, institutions and policies: a perspective on the adoption of agricultural innovations. Outlook Agric. 47, 81–86 (2018).

    Article  Google Scholar 

  21. 21.

    Kumar, G., Engle, C. & Tucker, C. Factors driving aquaculture technology adoption. J. World Aquac. Soc. 49, 447–476 (2018).

    Article  Google Scholar 

  22. 22.

    Von Essen, L. M., Ferse, S. C. A., Glaser, M. & Kunzmann, A. Attitudes and perceptions of villagers toward community-based mariculture in Minahasa, North Sulawesi, Indonesia. Ocean Coast. Manag. 73, 101–112 (2013).

    Article  Google Scholar 

  23. 23.

    Fox, M., Service, M., Moore, H., Dean, M. & Campbell, K. Barriers and facilitators to shellfish cultivation. Rev. Aquac. (2019).

  24. 24.

    Krause, G. et al. A revolution without people? Closing the people–policy gap in aquaculture development. Aquaculture 447, 44–55 (2015).

    Article  Google Scholar 

  25. 25.

    National Aquaculture Sector Overview: Denmark (FAO, 2019);

  26. 26.

    Johnson, T. et al. A social–ecological system framework for marine aquaculture research. Sustainability 11, 2522 (2019).

    Article  Google Scholar 

  27. 27.

    Ruff, E. O., Gentry, R. R., Clavelle, T., Thomas, L. R. & Lester, S. E. Governance and mariculture in the Caribbean. Mar. Policy 107, 103565 (2019).

    Article  Google Scholar 

  28. 28.

    Report on the Blue Growth Strategy Towards More Sustainable Growth and Jobs in the Blue Economy (European Commission, 2017).

  29. 29.

    Islam, M. S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar. Pollut. Bull. 50, 48–61 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    Costello, M. J. How sea lice from salmon farms may cause wild salmonid declines in Europe and North America and be a threat to fishes elsewhere. Proc. R. Soc. Lond. B 276, 3385–3394 (2009).

    Article  Google Scholar 

  31. 31.

    Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Froehlich, H. E., Gentry, R. R., Rust, M. B., Grimm, D. & Halpern, S. Public perceptions of aquaculture: evaluating spatiotemporal patterns of sentiment around the world. PLoS ONE 12, e0169281 (2017).

    Article  Google Scholar 

  33. 33.

    Tiller, R., Gentry, R. & Richards, R. Stakeholder driven future scenarios as an element of interdisciplinary management tools; the case of future offshore aquaculture development and the potential effects on fishermen in Santa Barbara, California. Ocean Coast. Manag. 73, 127–135 (2013).

    Article  Google Scholar 

  34. 34.

    McGinnis, M. V. & Collins, M. A race for marine space: science, values, and aquaculture planning in New Zealand. Coast. Manag. 41, 401–419 (2013).

    Article  Google Scholar 

  35. 35.

    Mather, C. & Fanning, L. Social licence and aquaculture: towards a research agenda. Mar. Policy 99, 275–282 (2019).

    Article  Google Scholar 

  36. 36.

    Flaherty, M., Reid, G., Chopin, T. & Latham, E. Public attitudes towards marine aquaculture in Canada: insights from the Pacific and Atlantic coasts. Aquac. Int. 27, 9–32 (2018).

    Article  Google Scholar 

  37. 37.

    Suplicy, F. M. A review of the multiple benefits of mussel farming. Rev. Aquac. (2018).

  38. 38.

    van der Schatte Olivier, A. et al. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquac. (2018).

  39. 39.

    Olivier, D., Heinecken, L. & Jackson, S. Mussel and oyster culture in Saldanha Bay, South Africa: potential for sustainable growth, development and employment creation. Food Secur. 5, 251–267 (2013).

    Article  Google Scholar 

  40. 40.

    Markowitz, H. Portfolio selection. J. Finance 7, 77–91 (1952).

    Google Scholar 

  41. 41.

    Sanchirico, J. N., Smith, M. D. & Lipton, D. W. An empirical approach to ecosystem-based fishery management. Ecol. Econ. 64, 586–596 (2008).

    Article  Google Scholar 

  42. 42.

    Edwards, S. F., Link, J. S. & Rountree, B. P. Portfolio management of wild fish stocks. Ecol. Econ. 49, 317–329 (2004).

    Article  Google Scholar 

  43. 43.

    Figge, F. Bio-folio: applying portfolio theory to biodiversity. Biodivers. Conserv. 13, 827–849 (2004).

    Article  Google Scholar 

  44. 44.

    Koellner, T. & Schmitz, O. J. Biodiversity, ecosystem function, and investment risk. BioScience 56, 977–985 (2006).

    Article  Google Scholar 

  45. 45.

    Wolfe, M. S. Crop strength through diversity. Nature 406, 681–682 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    Klinger, D. & Naylor, R. L. Searching for solutions in aquaculture: charting a sustainable course. Annu. Rev. Environ. Resour. 37, 247–276 (2012).

    Article  Google Scholar 

  48. 48.

    Global Aquaculture Production (FAO, 2018);

  49. 49.

    Tjur, T. Coeficients of determination in logistic regression models—a new proposal: the coefficent of discrimination. Am. Stat. 63, 366–372 (2009).

    Article  Google Scholar 

  50. 50.

    Doing Business (The World Bank, 2018);

  51. 51.

    Worldwide Governance Indicators (The World Bank, 2018);

  52. 52.

    World Bank Open Data (The World Bank, 2018);

  53. 53.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  54. 54.

    Wickham, H., Francois, R., Henry, L. & Muller, K. dplyr: A grammar of data manipulation. R package version 0.7.6 (2018).

  55. 55.

    Wickham, H. & Henry, L. tidyr: Easily tidy data with ‘spread()’ and ‘gather()’ functions. R package version 0.8.1 (2018).

  56. 56.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  57. 57.

    Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.5 (2017).

  58. 58.

    Lê, S., Josse, J. & Husson, F. FactoMineR: an R Package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).

    Article  Google Scholar 

  59. 59.

    Signorell, A. DescTools: Tools for descriptive statistics. R package version 0.99.27 (2019).

  60. 60.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).

  61. 61.

    South, A. rworldmap: A new R package for mapping global data. R J. 3, 35–43 (2011).

    Article  Google Scholar 

Download references


This work was funded by National Science Foundation grant no. 1759559.

Author information




R.R.G. and S.E.L. developed the research. R.R.G. performed the analysis with input from S.E.L. and E.O.R. All authors interpreted the results. R.R.G. wrote the manuscript with significant contributions from S.E.L. and E.O.R.

Corresponding author

Correspondence to Rebecca R. Gentry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–2 and Tables 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gentry, R.R., Ruff, E.O. & Lester, S.E. Temporal patterns of adoption of mariculture innovation globally. Nat Sustain 2, 949–956 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing