Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct and indirect loss of natural area from urban expansion

Abstract

Global losses of natural area are primarily attributed to cropland expansion, whereas the role of urban expansion is considered minor. However, urban expansion can induce cropland displacement, potentially leading to a loss of forest elsewhere. The extent of this effect is unknown. This study shows that indirect forest losses, through cropland displacement, far exceed direct losses from urban expansion. On a global scale, urban land increased from 33.2 to 71.3 million hectares (Mha) between 1992 and 2015, leading to a direct loss of 3.3 Mha of forest and an indirect loss of 17.8 to 32.4 Mha. In addition, this urban expansion led to a direct loss of 4.6 Mha of shrubland and an indirect loss of 7.0 to 17.4 Mha. Guiding urban development towards more sustainable trajectories can thus help preserve forest and other natural area at a global scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observed land cover changes between 1992 and 2015.
Fig. 2: Urban expansion and cropland expansion between 1992 and 2015.
Fig. 3: Global loss of forest and shrubland as a result of urban expansion between 1992 and 2015 under different assumptions for cropland displacement.

Data availability

Data that support the findings presented in this study are available from the author upon reasonable request.

Code availability

Scripts used for this analysis are available from the author upon reasonable request.

References

  1. 1.

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Change 26, 152–158 (2014).

    Article  Google Scholar 

  4. 4.

    Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21, 2655–2660 (2015).

    Article  Google Scholar 

  5. 5.

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 52, 143–150 (2002).

    Article  Google Scholar 

  7. 7.

    Alexander, P. et al. Drivers for global agricultural land use change: the nexus of diet, population, yield and bioenergy. Global Environ. Change 35, 138–147 (2015).

    Article  Google Scholar 

  8. 8.

    Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    Meyfroidt, P., Lambin, E. F., Erb, K.-H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Env. Sust. 5, 438–444 (2013).

    Article  Google Scholar 

  12. 12.

    Avellan, T., Meier, J. & Mauser, W. Are urban areas endangering the availability of rainfed crop suitable land? Remote Sens. Lett. 3, 631–638 (2012).

    Article  Google Scholar 

  13. 13.

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Ke, X. et al. Direct and indirect loss of natural habitat due to built-up area expansion: a model-based analysis for the city of Wuhan, China. Land Use Policy 74, 231–239 (2018).

    Article  Google Scholar 

  15. 15.

    van Vliet, J., Eitelberg, D. A. & Verburg, P. H. A global analysis of land take in cropland areas and production displacement from urbanization. Global Environ. Change 43, 107–115 (2017).

    Article  Google Scholar 

  16. 16.

    European Space Agency Climate Change Initiative Land Cover http://maps.elie.ucl.ac.be/CCI/viewer/index.php (2015).

  17. 17.

    Armenteras, D., Espelta, J. M., Rodríguez, N. & Retana, J. Deforestation dynamics and drivers in different forest types in Latin America: three decades of studies (1980–2010). Global Environ. Chang. 46, 139–147 (2017).

    Article  Google Scholar 

  18. 18.

    Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 5, 024002 (2010).

    Article  Google Scholar 

  19. 19.

    Pesaresi, M. et al. GHS Built-up Grid, Derived from Landsat, Multitemporal (1975, 1990, 2000, 2014) (European Commission, Joint Research Centre, accessed 1 January 2017); http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_r2015b

  20. 20.

    Liu, X. et al. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth engine platform. Remote Sens. Environ. 209, 227–239 (2018).

    Article  Google Scholar 

  21. 21.

    Liu, Z., He, C., Zhou, Y. & Wu, J. How much of the world’s land has been urbanized, really? A hierarchical framework for avoiding confusion. Landscape Ecol. 29, 763–771 (2014).

    Article  Google Scholar 

  22. 22.

    Potere, D. & Schneider, A. A critical look at representations of urban areas in global maps. GeoJournal 69, 55–80 (2007).

    Article  Google Scholar 

  23. 23.

    D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Future 2, 458–469 (2014).

    Article  Google Scholar 

  24. 24.

    Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K. & Galli, A. Affluence drives the global displacement of land use. Global Environ. Change 23, 433–438 (2013).

    Article  Google Scholar 

  25. 25.

    Qiang, W., Liu, A., Cheng, S., Kastner, T. & Xie, G. Agricultural trade and virtual land use: the case of China’s crop trade. Land Use Policy 33, 141–150 (2013).

    Article  Google Scholar 

  26. 26.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Env. Sust. 5, 484–493 (2013).

    Article  Google Scholar 

  28. 28.

    Byerlee, D., Stevenson, J. & Villoria, N. Does intensification slow crop land expansion or encourage deforestation? Glob. Food Secur.-Agr. 3, 92–98 (2014).

    Article  Google Scholar 

  29. 29.

    Tabeau, A., Helming, J. & Philippidis, G. Land Supply Elasticities (Publications Office of the European Union, 2017).

  30. 30.

    Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).

    Article  Google Scholar 

  31. 31.

    Meyfroidt, P. et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9, 074012 (2014).

    Article  Google Scholar 

  32. 32.

    Gasparri, N. I., Grau, H. R. & Gutiérrez Angonese, J. Linkages between soybean and neotropical deforestation: coupling and transient decoupling dynamics in a multi-decadal analysis. Global Environ. Change 23, 1605–1614 (2013).

    Article  Google Scholar 

  33. 33.

    Fehlenberg, V. et al. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Global Environ. Change 45, 24–34 (2017).

    Article  Google Scholar 

  34. 34.

    Angel, S., Parent, J., Civco, D. L., Blei, A. & Potere, D. The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Prog. Plann. 75, 53–107 (2011).

    Article  Google Scholar 

  35. 35.

    Fragkias, M., Güneralp, B., Seto, K. C. & Goodness, J. A. in Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities (eds Elmqvist T. et al.) 409–435 (Springer Netherlands, 2013).

  36. 36.

    Bren d’Amour, C. et al. Future urban land expansion and implications for global croplands. Proc. Natl Acad. Sci. USA 114, 8939–8944 (2017).

    Article  Google Scholar 

  37. 37.

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Liu, Y., Fang, F. & Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 40, 6–12 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Schneider, A. & Woodcock, C. E. Compact, dispersed, fragmented, extensive? A comparison of urban growth in twenty-five global cities using remotely sensed data, pattern metrics and census information. Urban Stud. 45, 659–692 (2008).

    Article  Google Scholar 

  41. 41.

    Chen, H., Jia, B. & Lau, S. S. Y. Sustainable urban form for Chinese compact cities: challenges of a rapid urbanized economy. Habitat Int. 32, 28–40 (2008).

    Article  Google Scholar 

  42. 42.

    Cortinovis, C., Haase, D., Zanon, B. & Geneletti, D. Is urban spatial development on the right track? Comparing strategies and trends in the European Union. Landscape Urban Plan. 181, 22–37 (2019).

    Article  Google Scholar 

  43. 43.

    Boyle, R. & Mohamed, R. State growth management, smart growth and urban containment: a review of the US and a study of the heartland. J. Environ. Plann. Man. 50, 677–697 (2007).

    Article  Google Scholar 

  44. 44.

    Bunker, R. How Is the compact city faring in Australia? Plan. Pract. Res. 29, 449–460 (2014).

    Article  Google Scholar 

  45. 45.

    Watson, V. Seeing from the south: refocusing urban planning on the globe’s central urban issues. Urban Stud. 46, 2259–2275 (2009).

    Article  Google Scholar 

  46. 46.

    Westerink, J. et al. Dealing with sustainability trade-offs of the compact city in peri-urban planning across European city regions. Eur. Plan. Stud. 21, 473–497 (2013).

    Article  Google Scholar 

  47. 47.

    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    Article  Google Scholar 

  48. 48.

    Michetti, M. & Zampieri, M. Climate–human–land interactions: a review of major modelling approaches. Land 3, 793–833 (2014).

    Article  Google Scholar 

  49. 49.

    Levis, S. Modeling vegetation and land use in models of the Earth System. WIREs Clim. Change 1, 840–856 (2010).

    Article  Google Scholar 

  50. 50.

    van Vliet, J., Verburg, P. H., Grădinaru, S. R. & Hersperger, A. M. Beyond the urban-rural dichotomy: towards a more nuanced analysis of changes in built-up land. Comput. Environ. Urban. 74, 41–49 (2019).

    Article  Google Scholar 

  51. 51.

    Kastner, T., Erb, K.-H. & Haberl, H. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9, 034015 (2014).

    Article  Google Scholar 

  52. 52.

    Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Global Environ. Change 23, 1178–1186 (2013).

    Article  Google Scholar 

  53. 53.

    Poulter, B. et al. Plant functional type classification for earth system models: results from the European Space Agency’s land cover climate change initiative. Geosci. Model Dev. 8, 2315–2328 (2015).

    Article  Google Scholar 

  54. 54.

    Li, W. et al. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 10, 219–234 (2018).

    Article  Google Scholar 

  55. 55.

    European Space Agency Climate Change Initiative Land Cover CCI Product User Guide v.2.0 http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (2017).

  56. 56.

    Di Gregorio, A. Land Cover Classification System (LCCS); Classification Concepts and User Manual; Software v.2. Environment and Natural Resources Series No. 8 (Food and Agriculture Organization of the United Nations, 2005).

  57. 57.

    Neumann, K., Verburg, P. H., Stehfest, E. & Müller, C. The yield gap of global grain production: a spatial analysis. Agr. Syst. 103, 316–326 (2010).

    Article  Google Scholar 

  58. 58.

    van Asselen, S. & Verburg, P. H. A land system representation for global assessments and land-use modeling. Glob. Change Biol. 18, 3125–3148 (2012).

    Article  Google Scholar 

  59. 59.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  Google Scholar 

  60. 60.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  61. 61.

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  Article  Google Scholar 

  62. 62.

    Nutritive Factors (Food and Agriculture Organization of the United Nations, accessed 27 February 2019); http://www.fao.org/fileadmin/templates/ess/ess_test_folder/Food_security/Excel_sheets/Nutritive_Factors.xls

Download references

Acknowledgements

J.v.V. thanks R. Prestele for his help with the spatial data analysis. This project was supported by NWO-WOTRO project no. W 07.303.108 on joint SDG research. This paper contributes to the Global Land Programme (https://glp.earth).

Author information

Affiliations

Authors

Contributions

J.v.V. designed the study, conducted the data analysis and wrote the paper.

Corresponding author

Correspondence to Jasper van Vliet.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Supplementary Tables 1–12, Supplementary References 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat Sustain 2, 755–763 (2019). https://doi.org/10.1038/s41893-019-0340-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing