Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anthropogenic lead in Amazonian wildlife

Matters Arising to this article was published on 21 September 2020

Abstract

Lead levels and isotopic fingerprints in 315 free-ranging animals belonging to 18 wild game species in four remote areas of the Peruvian Amazon provide a comprehensive picture of anthropogenic lead pollution in tropical rainforests. The high average concentration of lead (0.49 mg kg−1 wet weight) in livers from Amazonian wild game is comparable to the levels of lead in industrialized countries and mining areas. Although hunting ammunition is probably the main source of lead in wildlife, oil-related pollution is also a major source of contaminant lead in areas in which oil is extracted. Owing to the extended use of lead shot in subsistence hunting worldwide and the ever-encroaching oil-extraction industry in tropical rainforests, these results uncover important health risks to tropical wildlife and local communities that rely on subsistence hunting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Map of the study area, and location of the soil and oil-related samples.
Fig. 2: Lead isotopic ratios in the samples analysed in the study and from putative anthropogenic sources (that is, ammunition and oil–containing samples).
Fig. 3: Lead isotopic ratios in biological samples (livers) and putative lead sources.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the Pangaea repository at https://doi.org/10.1594/PANGAEA.874916.

References

  1. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article  CAS  Google Scholar 

  2. Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. USA 100, 10309–10313 (2003).

    Article  CAS  Google Scholar 

  3. Orta-Martínez, M. et al. First evidences of Amazonian wildlife feeding on petroleum-contaminated soils: a new exposure route to petrogenic compounds? Environ. Res. 160, 514–517 (2018).

    Article  Google Scholar 

  4. Butt, N., Beyer, H., Bennett, J. & Biggs, D. Biodiversity risks from fossil fuel extraction. Science 342, 425–426 (2013).

    Article  CAS  Google Scholar 

  5. Orta-Martínez, M., Pellegrini, L. & Arsel, M. “The squeaky wheel gets the grease”? The conflict imperative and the slow fight against environmental injustice in northern Peruvian Amazon. Ecol. Soc. 23, 7 (2018).

    Article  Google Scholar 

  6. O’Callaghan-Gordo, C., Orta-Martínez, M. & Kogevinas, M. Health effects of non-occupational exposure to oil extraction. Environ. Health 15, 56 (2016).

    Article  Google Scholar 

  7. Anticona, C., Bergdahl, I. A., Lundh, T., Alegre, Y. & Sebastian, M. S. Lead exposure in indigenous communities of the Amazon basin, Peru. Int. J. Hyg. Environ. Health 215, 59–63 (2011).

    Article  CAS  Google Scholar 

  8. Anticona, C., Bergdahl, I. A. & San Sebastian, M. Lead exposure among children from native communities of the Peruvian Amazon basin. Rev. Panam. Salud Publica 31, 296–302 (2012).

    Google Scholar 

  9. Cheng, H. & Hu, Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ. Pollut. 158, 1134–1146 (2010).

    Article  CAS  Google Scholar 

  10. Hu, H., Shih, R., Rothenberg, S. & Schwartz, B. S. The epidemiology of lead toxicity in adults: measuring dose and consideration of other methodologic issues. Environ. Health Perspect. 115, 455–462 (2007).

    Article  CAS  Google Scholar 

  11. Gilbert, S. G. & Weiss, B. A rationale for lowering the blood lead action level from 10 to 2 μg/dL. Neurotoxicology 27, 693–701 (2006).

    Article  CAS  Google Scholar 

  12. Final Review of Scientific Information on Lead (UNEP Chemicals Branch, 2010).

  13. Nawrot, T. S. & Staessen, J. A. Low-level environmental exposure to lead unmasked as silent killer. Circulation 114, 1347–1349 (2006).

    Article  Google Scholar 

  14. Bartrons, M., Catalan, J. & Penuelas, J. Spatial and temporal trends of organic pollutants in vegetation from remote and rural areas. Sci. Rep. 6, 25446 (2016).

    Article  CAS  Google Scholar 

  15. Robinson, J. G. & Bennett, E. L. Hunting for Sustainability in Tropical Forests (Columbia Univ. Press, 2000).

  16. Arnemo, J. M. et al. Health and environmental risks from lead-based ammunition: science versus socio-politics. EcoHealth 13, 618–622 (2016).

    Article  Google Scholar 

  17. Plaza, P. I., Uhart, M., Caselli, A., Wiemeyer, G. & Lambertucci, S. A. A review of lead contamination in South American birds: the need for more research and policy changes. Perspect. Ecol. Conserv. 16, 201–207 (2018).

    Google Scholar 

  18. Finer, M. et al. Future of oil and gas development in the western Amazon. Environ. Res. Lett. 10, 024003 (2015).

    Article  Google Scholar 

  19. Neff, J. M. Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil Well Produced Water (Elsevier, 2002).

  20. Yusta-García, R., Orta-Martínez, M., Mayor, P., González-Crespo, C. & Rosell-Melé, A. Water contamination from oil extraction activities in Northern Peruvian Amazonian rivers. Environ. Pollut. 225, 370–380 (2017).

    Article  Google Scholar 

  21. Candelone, J.-P., Hong, S., Pellone, C. & Boutron, C. F. Post-industrial revolution changes in large-scale atmospheric pollution of the Northern Hemisphere by heavy metals as documented in central Greenland snow and ice. J. Geophys. Res. 100, 16605–16616 (1995).

    Article  CAS  Google Scholar 

  22. Correia, A. et al. Trace elements in South America aerosol during 20th century inferred from a Nevado Illimani ice core, eastern Bolivian Andes (6350 m asl). Atmos. Chem. Phys. 3, 1337–1352 (2003).

    Article  CAS  Google Scholar 

  23. Ikegawa, M. et al. Geographical variations of major and trace elements in East Antarctica. Atmos. Environ. 33, 1457–1467 (1999).

    Article  CAS  Google Scholar 

  24. Emmons, L. & Stark, N. Elemental composition of a natural mineral lick in Amazonia. Biotropica 11, 311–313 (1979).

    Article  Google Scholar 

  25. Klaus, G., Klaus-Hügi, C. & Schmid, B. Geophagy by large mammals at natural licks in the rain forest of the Dzanga National Park, Central African Republic. J. Trop. Ecol. 14, 829–839 (1998).

    Article  Google Scholar 

  26. Dudley, R., Kaspari, M. & Yanoviak, S. P. Lust for salt in the western Amazon. Biotropica 44, 6–9 (2012).

    Article  Google Scholar 

  27. Blake, J. G. et al. Mineral licks as diversity hotspots in lowland forest of eastern Ecuador. Diversity 3, 217–234 (2011).

    Article  Google Scholar 

  28. Beyer, W. N. & Fries, G. in Handbook of Ecotoxicology 2nd edn (eds Hoffman, D. J. et al.) 151–166 (Lewis Publishers, 2002).

  29. Beyer, W. N. & Meador, J. P. Environmental Contaminants in Biota: Interpreting Tissue Concentrations (CRC, 2011).

  30. Bilandžić, N., Sedak, M., Vratarić, D., Perić, T. & Šimić, B. Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia. Sci. Total Environ. 407, 4243–4247 (2009).

    Article  Google Scholar 

  31. Reglero, M. M., Monsalve-González, L., Tagart, M. & Mateo, R. Transfer of metals to plants and red deer in an old lead mining area in Spain. Sci. Total Environ. 406, 287–297 (2008).

    Article  CAS  Google Scholar 

  32. Amici, A., Danieli, P. P., Russo, C., Primi, R. & Ronchi, B. Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the province of Viterbo, central Italy. Ital. J. Anim. Sci. 11, e65 (2012).

    Article  Google Scholar 

  33. Garitano-Zavala, Á., Cotín, J., Borràs, M. & Nadal, J. Trace metal concentrations in tissues of two tinamou species in mining areas of Bolivia and their potential as environmental sentinels. Environ. Monit. Assess. 168, 629–644 (2010).

    Article  CAS  Google Scholar 

  34. Bollhöfer, A. & Rosman, K. J. Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochim. Cosmochim. Acta 64, 3251–3262 (2000).

    Article  Google Scholar 

  35. Eichler, A., Gramlich, G., Kellerhals, T., Tobler, L. & Schwikowski, M. Pb pollution from leaded gasoline in South America in the context of a 2000-year metallurgical history. Sci. Adv. 1, e1400196 (2015).

    Article  Google Scholar 

  36. de Souza, J. J. L. L., Fontes, M. P. F., Gilkes, R., da Costa, L. M. & de Oliveira, T. S. Geochemical signature of Amazon tropical rainforest soils. Rev. Bras. Ciênc. Solo 42, e0170192 (2018).

    Google Scholar 

  37. Rosell-Melé, A. et al. Oil pollution in soils and sediments from the northern Peruvian Amazon. Sci. Total Environ. 610–611, 1010–1019 (2018).

    Article  Google Scholar 

  38. Rabinowitz, M. B. & Wetherill, G. W. Identifying sources of lead contamination by stable isotope techniques. Environ. Sci. Technol. 6, 705–709 (1972).

    Article  CAS  Google Scholar 

  39. Pain, D. J. et al. Potential hazard to human health from exposure to fragments of lead bullets and shot in the tissues of game animals. PLoS ONE 5, e10315 (2010).

    Article  Google Scholar 

  40. Cao, X., Ma, L. Q., Chen, M., Hardison, D. W. & Harris, W. G. Weathering of lead bullets and their environmental effects at outdoor shooting ranges. J. Environ. Qual. 1, 526–534 (2003).

    Article  Google Scholar 

  41. Hunt, W. G. et al. Bullet fragments in deer remains: implications for lead exposure in avian scavengers. Wildl. Soc. Bull. 34, 167–170 (2006).

    Article  Google Scholar 

  42. Fustinoni, S., Sucato, S., Consonni, D., Mannucci, P. M. & Moretto, A. Blood lead levels following consumption of game meat in Italy. Environ. Res. 155, 36–41 (2017).

    Article  CAS  Google Scholar 

  43. Knutsen, H. K., Brantsaeter, A.-L., Alexander, J. & Meltzer, H. M. In Proc. Oxford Lead Symposium: Lead Ammunition: Understanding and Minimizing the Risks to Human and Environmental Health (eds Delahay, R. J. & Spray, C. J.) 44–50 (2014).

  44. Bochyński, P., Kuliczkowski, M., Karpiewska, A., Turkiewicz, M. & Dobosz, T. Hunting shot—evolution of manufacturing technology. Arch. Med. Sadowej Kryminol 66, 41–64 (2016).

    Google Scholar 

  45. Monsalve, J. L. P. Depredador depredado: cacerías y comercio de jaguar en dos cuencas Andino Amazônicas. Novos Cad. NAEA 12, 109–134 (2009).

    Google Scholar 

  46. Gremse, C. & Rieger, S. In Proc. Oxford Lead Symposium: Lead Ammunition: Understanding and Minimizing the Risks to Human and Environmental Health (eds Delahay, R. J. & Spray, C. J.) 51–57 (2014).

  47. Orta Martínez, M. et al. Impacts of petroleum activities for the Achuar people of the Peruvian Amazon: summary of existing evidence and research gaps. Environ. Res. Lett. 2, 045006 (2007).

    Article  Google Scholar 

  48. Bodmer, R. E. & Lozano, E. P. Rural development and sustainable wildlife use in Peru. Conserv. Biol. 15, 1163–1170 (2001).

    Article  Google Scholar 

  49. Peres, C. A. Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conserv. Biol. 14, 240–253 (2000).

    Article  Google Scholar 

  50. Bennett, E. L. Is there a link between wild meat and food security? Conserv. Biol. 16, 590–592 (2002).

    Article  Google Scholar 

  51. Fa, J. E., Peres, C. A. & Meeuwig, J. Bushmeat exploitation in tropical forests: an intercontinental comparison. Conserv. Biol. 16, 232–237 (2002).

    Article  Google Scholar 

  52. Red List of Threatened Species (IUCN, 2016).

Download references

Acknowledgements

We thank the local indigenous communities of the Pastaza, Corrientes, Yavari-Mirin and Pucacuro river basins for their assistance and cooperation; members of the indigenous federations of the Pastaza and Corrientes River basins (FEDIQUEP and FECONACOR, respectively) and the contribution of their environmental monitors, especially A. Sánchez, A. Guevara, E. Hualinga, J. J. Butuna, J. P. Gayas, M. Javier, M. Cariajano, R. Dahua Mucushua and T. Arahuanaza; the Pucacuro National Reserve, the Servicio Forestal Nacional y de Fauna Silvestre of Peru and CITES-Spain; P. Pérez-Peña, N. Fernandez-Gascon, I. Calm-Raurell, P. Rodríguez, L. Vela-Alegría, A. Ferrer-Mayol and G. Pocull-Bellés for their collaboration during the study; and M. Bowler, Á. Fernández-Llamazares, J. Garcia-Orellana, D. Papoulias and C. O’Callaghan-Gordo for discussions and comments on the manuscript. This work was supported by the Fundació Autònoma Solidària, IDEAWILD, the Earthwatch Institute, the Rufford Foundation (13621-1) and the Spanish research Ministry (Maria de Maeztu Award MDM-2015-0552). M.C.-S. benefited from the financial support of the AGAUR (FI-DGR 2014, 2015 and 2016), and M.O.-M. benefited from the financial support of the Marie Curie Actions (REA agreement 289374, ENTITLE), the Conflict and Cooperation over Natural Resources in Developing Countries program of The Netherlands Organisation for Scientific Research, the International Initiative for Impact Evaluation and the Ministerio de Ciencia, Innovación y Universidades (RYC-2016-21366, funded by the European Social Fund/Investing in your Future).

Author information

Authors and Affiliations

Authors

Contributions

M.O.-M., P.M. and A.R.-M. conceived the study. M.C.-S., P.M., M.O.-M. and A.R.-M. conducted the field work, analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Pedro Mayor or Martí Orta-Martínez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartró-Sabaté, M., Mayor, P., Orta-Martínez, M. et al. Anthropogenic lead in Amazonian wildlife. Nat Sustain 2, 702–709 (2019). https://doi.org/10.1038/s41893-019-0338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0338-7

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene