Modelling the drivers of a widespread shift to sustainable diets


A reduction in global meat consumption can significantly reduce the adverse environmental effects of the food system, but it would require widespread dietary changes. Such shifts to sustainable diets depend on several behavioural factors that have not yet been addressed in relation to the food system. This study links a behavioural diet shift model to an integrated assessment model to identify the main drivers of global diet change and its implications for the food system. The results show that the social norm effect (for instance, the extent of vegetarianism in the population that accelerates a further switch to a vegetarian diet) and self-efficacy are the main drivers of widespread dietary changes. These findings stress the importance of value-driven actions motivated either by intrinsic identity or by group dynamics over health and climate risk perceptions in steering diet change dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual framework of the diet change model.
Fig. 2: Dynamic simulation results.
Fig. 3: Environmental impact of diet change scenarios in 2050.
Fig. 4: Sobol sensitivity indices for the percentage of vegetarians in 2050 and 2100 for the reference diet composition scenario.
Fig. 5: Scenario discovery results for percentage of vegetarians.

Data availability

The input data of the model presented in this study may be seen in Supplementary Table 3. The input data are obtained from calibration according to historical data of agro-economic variables as described in Methods. The historical data used in calibration are obtained from the statistics of the United Nations Food and Agriculture Organization, available at This study also made use of online Global Burden of Disease datasets ( provided by the Institute for Health Metrics and Evaluation, University of Washington.

Code availability

The model used in this study (the FeliX) and its input data are available at The custom computer code written in Python (IPython Notebooks) and used to analyze simulation results may be accessed on


  1. 1.

    Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 260–263 (2018).

    Article  Google Scholar 

  2. 2.

    Steg, L. Limiting climate change requires research on climate action. Nat. Clim. Change 8, 759–761 (2018).

    Article  Google Scholar 

  3. 3.

    Rogelj J. et al. Global warming of 1.5 °C. in An IPCC Special Report on the Impacts of Global Warming of 1.5°C Above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, 2018).

  4. 4.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Article  Google Scholar 

  5. 5.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  7. 7.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  Google Scholar 

  8. 8.

    Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  10. 10.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Obersteiner, M. et al. Assessing the land resource–food price nexus of the sustainable development goals. Sci. Adv. 2, e1501499 (2016).

    Article  Google Scholar 

  12. 12.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Food Balance Sheets (FAO, 2018).

  14. 14.

    Food and Drink Report: the Era of the Mindful Consumer (Waitrose, 2018);

  15. 15.

    De Boer, J., Schösler, H. & Boersema, J. J. Climate change and meat eating: an inconvenient couple? J. Environ. Psychol. 33, 1–8 (2013).

    Article  Google Scholar 

  16. 16.

    Macdiarmid, J. I., Douglas, F. & Campbell, J. Eating like there’s no tomorrow: Public awareness of the environmental impact of food and reluctance to eat less meat as part of a sustainable diet. Appetite 96, 487–493 (2016).

    Article  Google Scholar 

  17. 17.

    Dhont, K. & Hodson, G. Why do right-wing adherents engage in more animal exploitation and meat consumption? Personal. Individ. Differ. 64, 12–17 (2014).

    Article  Google Scholar 

  18. 18.

    Dhont, K., Hodson, G. & Leite, A. C. Common ideological roots of speciesism and generalized ethnic prejudice: the social dominance human–animal relations model (SD‐HARM). Eur. J. Personality 30, 507–522 (2016).

    Article  Google Scholar 

  19. 19.

    Hodson, G. & Earle, M. Conservatism predicts lapses from vegetarian/vegan diets to meat consumption (through lower social justice concerns and social support. Appetite 120, 75–81 (2018).

    Article  Google Scholar 

  20. 20.

    Rydzak, F., Obersteiner, M., Kraxner, F., Fritz, S. & McCallum, I. FeliX3—Impact Assessment Model: Systemic View Across Societal Benefit Areas Beyond Global Earth Observation (International Institute for Applied Systems Analysis, 2013).

  21. 21.

    Walsh, B. J. et al. New feed sources key to ambitious climate targets. Carbon Balance Manag. 10, 26 (2015).

    Article  Google Scholar 

  22. 22.

    Walsh, B. et al. Pathways for balancing CO2 emissions and sinks. Nat. Commun. 8, 14856 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Beckage, Brian. Linking models of human behaviour and climate alters projected climate change. Nat. Clim. Change 8, 79–84 (2018).

    Article  Google Scholar 

  24. 24.

    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Process. 50, 179–211 (1991).

    Article  Google Scholar 

  25. 25.

    Boer, H. & Seydel, E. in Predicting Health Behaviour: Research and Practice with Social Cognition Models (eds Conner, M. & Norman, P.) Ch. 4 (Open University Press, 1996).

  26. 26.

    Slovic, P. Perception of risk. Science 236, 280–285 (1987).

    CAS  Article  Google Scholar 

  27. 27.

    Fox, N. & Ward, K. Health, ethics and environment: a qualitative study of vegetarian motivations. Appetite 50, 422–429 (2008).

    Article  Google Scholar 

  28. 28.

    Stehfest, E. Food choices for health and planet. Nature 515, 501–502 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Westhoek, H. et al. Food choices, health and environment: effects of cutting Europe’s meat and dairy intake. Glob. Environ. Change 26, 196–205 (2014).

    Article  Google Scholar 

  30. 30.

    Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Willet, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article  Google Scholar 

  32. 32.

    Rogers, E. M. Diffusion of Innovations 4th edn (Simon and Schuster, 2010).

  33. 33.

    Bass, F. M. A new product growth for model consumer durables. Manage. Sci. 15, 215–227 (1969).

    Article  Google Scholar 

  34. 34.

    Vranken, L., Avermaete, T., Petalios, D. & Mathijs, E. Curbing global meat consumption: emerging evidence of a second nutrition transition. Environ. Sci. Pol. 39, 95–106 (2014).

    Article  Google Scholar 

  35. 35.

    Bryant, B. P. & Lempert, R. J. Thinking inside the box: a participatory, computer-assisted approach to scenario discovery. Technol. Forecast. Soc. 77, 34–49 (2010).

    Article  Google Scholar 

  36. 36.

    Kwakkel, J. H. & Jaxa-Rozen, M. Improving scenario discovery for handling heterogeneous uncertainties and multinomial classified outcomes. Environ. Modell. Softw. 79, 311–321 (2016).

    Article  Google Scholar 

  37. 37.

    Hayhoe, K. When facts are not enough. Science 360, 943–943 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Kahan, D. Fixing the communications failure. Nature 463, 296 (2010).

    CAS  Article  Google Scholar 

  39. 39.

    Kahan, D. M. et al. The polarizing impact of science literacy and numeracy on perceived climate change risks. Nat. Clim. Change 2, 732–735 (2012).

    Article  Google Scholar 

  40. 40.

    Fielding, K. S., McDonald, R. & Louis, W. R. Theory of planned behaviour, identity and intentions to engage in environmental activism. J. Environ. Psychol. 28, 318–326 (2008).

    Article  Google Scholar 

  41. 41.

    Nigbur, D., Lyons, E. & Uzzell, D. Attitudes, norms, identity and environmental behaviour: using an expanded theory of planned behaviour to predict participation in a kerbside recycling programme. Brit. J. Soc. Psychol. 49, 259–284 (2010).

    Article  Google Scholar 

  42. 42.

    Gatersleben, B., Murtagh, N. & Abrahamse, W. Values, identity and pro-environmental behaviour. Contemp. Soc. Sci. 9, 374–392 (2014).

    Article  Google Scholar 

  43. 43.

    Fanghella, V., d’Adda, G. & Tavoni, M. On the use of nudges to affect spillovers in environmental behaviors. Front. Psychol. 10, 61 (2019).

    Article  Google Scholar 

  44. 44.

    Reese, G. & Junge, E. Keep on rockin’in a (plastic-) free world: collective efficacy and pro-environmental intentions as a function of task difficulty. Sustainability 9, 200 (2017).

    Article  Google Scholar 

  45. 45.

    Jugert, P. et al. Collective efficacy increases pro-environmental intentions through increasing self-efficacy. J. Environ. Psychol. 48, 12–23 (2016).

    Article  Google Scholar 

  46. 46.

    Pohjolainen, P., Vinnari, M. & Jokinen, P. Consumers’ perceived barriers to following a plant-based diet. Brit. Food J. 117, 1150–1167 (2015).

    Article  Google Scholar 

  47. 47.

    McCollum, D. L. et al. Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices. Transport Res. D–Tr. E. 55, 322–342 (2017).

    Article  Google Scholar 

  48. 48.

    Pettifor, H., Wilson, C., McCollum, D. & Edelenbosch, O. Y. Modelling social influence and cultural variation in global low-carbon vehicle transitions. Glob. Environ. Change 47, 76–87 (2017).

    Article  Google Scholar 

  49. 49.

    Rydzak, F., Obersteiner, M. & Kraxner, F. Impact of global earth observation-systemic view across GEOSS societal benefit area. Int. J. Spat. Data Infrastruct. Res. 5, 216–243 (2010).

    Google Scholar 

  50. 50.

    Obersteiner M., Rydzak F., Fritz S., & McCallum I. in The Value of Information (eds Laxminarayan, R. & Macauley, M. K.) 67–90 (Springer, 2012).

  51. 51.

    Rogers, R. W. A protection motivation theory of fear appeals and attitude change1. J. Psychol. 91, 93–114 (1975).

    Article  Google Scholar 

  52. 52.

    Povey, R., Conner, M., Sparks, P., James, R. & Shepherd, R. The theory of planned behaviour and healthy eating: examining additive and moderating effects of social influence variables. Psychol. Health 14, 991–1006 (2000).

    CAS  Article  Google Scholar 

  53. 53.

    de Ridder, D., Kroese, F., Evers, C., Adriaanse, M. & Gillebaart, M. Healthy diet: health impact, prevalence, correlates, and interventions. Psychol. Health 32, 907–941 (2017).

    Article  Google Scholar 

  54. 54.

    Tikir, A. & Lehmann, B. Climate change, theory of planned behavior and values: a structural equation model with mediation analysis. Clim. Change 104, 389–402 (2011).

    Article  Google Scholar 

  55. 55.

    Bockarjova, M. & Steg, L. Can protection motivation theory predict pro-environmental behavior? Explaining the adoption of electric vehicles in the Netherlands. Glob. Environ. Change 28, 276–288 (2014).

    Article  Google Scholar 

  56. 56.

    JCJH, Aerts et al. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Change 8, 193–199 (2018).

    Article  Google Scholar 

  57. 57.

    Renger, D. & Reese, G. From equality‐based respect to environmental activism: antecedents and consequences of global identity. Polit. Psychol. 38, 867–879 (2017).

    Article  Google Scholar 

  58. 58.

    Moser, S. & Kleinhückelkotten, S. Good intents, but low impacts: diverging importance of motivational and socioeconomic determinants explaining pro-environmental behavior, energy use, and carbon footprint. Environ. Behavior 50, 626–656 (2017).

    Article  Google Scholar 

  59. 59.

    Bamberg, S. & Möser, G. Twenty years after Hines, Hungerford, and Tomera: a new meta-analysis of psycho-social determinants of pro-environmental behaviour. J. Environ. Psychol. 27, 14–25 (2007).

    Article  Google Scholar 

  60. 60.

    Robinson, E., Thomas, J., Aveyard, P. & Higgs, S. What everyone else is eating: a systematic review and meta-analysis of the effect of informational eating norms on eating behavior. J. Acad. Nutr. Diet. 114, 414–429 (2014).

    Article  Google Scholar 

  61. 61.

    Fritsche, I., Barth, M., Jugert, P., Masson, T. & Reese, G. A social identity model of pro-environmental action (SIMPEA). Psychol. Rev. 125, 245–269 (2018).

    Article  Google Scholar 

  62. 62.

    Hunter, E. & Röös, E. Fear of climate change consequences and predictors of intentions to alter meat consumption. Food Policy 62, 151–160 (2016).

    Article  Google Scholar 

  63. 63.

    Alló, M. & Loureiro, M. L. The role of social norms on preferences towards climate change policies: a meta-analysis. Energ. Policy 73, 563–574 (2014).

    Article  Google Scholar 

  64. 64.

    Steinberg, L. & Monahan, K. C. Age differences in resistance to peer influence. Dev. Psychol. 43, 1531–1543 (2007).

    Article  Google Scholar 

  65. 65.

    Knoll, L. J., Leung, J. T., Foulkes, L. & Blakemore, S.-J. Age-related differences in social influence on risk perception depend on the direction of influence. J. Adolescence 60, 53–63 (2017).

    Article  Google Scholar 

  66. 66.

    Sterman, J. D. Business Dynamics: Systems Thinking and Modeling for a Complex World (Irwin/McGraw-Hill, 2000).

  67. 67.

    Renner, B. & Schwarzer, R. The motivation to eat a healthy diet: how intenders and nonintenders differ in terms of risk perception, outcome expectancies, self-efficacy, and nutrition behavior. Pol. Psychol. Bull. 36, 7–15 (2005).

    Google Scholar 

  68. 68.

    Global Health Data Exchange. Global Burden of Disease Study 2017 (Institute for Health Metrics, 2019); .

  69. 69.

    Leahy, E., Lyons, S., & Tol, R. S. An Estimate of the Number of Vegetarians in the World Working Paper 340 (ESRI, 2010).

  70. 70.

    Eker, S., Rovenskaya, E., Obersteiner, M. & Langan, S. Practice and perspectives in the validation of resource management models. Nat. Commun. 9, 5359 (2018).

    Article  Google Scholar 

  71. 71.

    Barlas, Y. Formal aspects of model validity and validation in system dynamics. Syst. Dynam. Rev. 12, 183–210 (1996).

    Article  Google Scholar 

  72. 72.

    Valin, H. et al. Description of the GLOBIOM (IIASA) model and comparison with the MIRAGE-BioF (IFPRI) model. Crops 8, 3.1 (2013).

    Google Scholar 

  73. 73.

    Saltelli, A. et al. Global Sensitivity Analysis: The Primer (John Wiley & Sons, 2008).

  74. 74.

    Saltelli, A. et al. Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput. Phys. Commun. 181, 259–270 (2010).

    CAS  Article  Google Scholar 

  75. 75.

    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simulat. 55, 271–280 (2001).

    Article  Google Scholar 

  76. 76.

    Jaxa-Rozen, M. & Kwakkel, J. Tree-based ensemble methods for sensitivity analysis of environmental models: a performance comparison with Sobol and Morris techniques. Environ. Modell. Softw. 107, 245–266 (2018).

    Article  Google Scholar 

  77. 77.

    Herman, J. & Usher, W. SALib: an open-source Python library for sensitivity analysis. J. Open Source Softw. 2, 97 (2017).

    Article  Google Scholar 

  78. 78.

    Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297 (2002).

    CAS  Article  Google Scholar 

  79. 79.

    Lamontagne, J. R., Reed, P. M., Marangoni, G., Keller, K. & Garner, G. G. Robust abatement pathways to tolerable climate futures require immediate global action. Nat. Clim. Change 9, 290–294 (2019).

    Article  Google Scholar 

  80. 80.

    Lempert, R. J., Groves, D. G., Popper, S. W. & Bankes, S. C. A general, analytic method for generating robust strategies and narrative scenarios. Manag. Sci. 52, 514–528 (2006).

    Article  Google Scholar 

  81. 81.

    Lempert, R. J., Bryant, B. P. & Bankes, S. C. Comparing Algorithms for Scenario Discovery (RAND, 2008).

  82. 82.

    Lamontagne, J. R. et al. Large ensemble analytic framework for consequence‐driven discovery of climate change scenarios. Earths Future 6, 488–504 (2018).

    Article  Google Scholar 

  83. 83.

    Rozenberg, J., Guivarch, C., Lempert, R. & Hallegatte, S. Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation. Clim. Change 122, 509–522 (2014).

    Article  Google Scholar 

  84. 84.

    Guivarch, C., Rozenberg, J. & Schweizer, V. The diversity of socio-economic pathways and CO2 emissions scenarios: insights from the investigation of a scenarios database. Environ. Modell. Softw. 80, 336–353 (2016).

    Article  Google Scholar 

  85. 85.

    Eker, S. & van Daalen, E. A model-based analysis of biomethane production in the Netherlands and the effectiveness of the subsidization policy under uncertainty. Energ. Policy 82, 178–196 (2015).

    CAS  Article  Google Scholar 

  86. 86.

    Kwakkel, J. H. The exploratory modeling workbench: an open source toolkit for exploratory modeling, scenario discovery, and (multi-objective) robust decision making. Environ. Modell. Softw. 96, 239–250 (2017).

    Article  Google Scholar 

Download references


This research was supported by the International Institute for Applied Systems Analysis (IIASA) and by the European Research Council Synergy grant ERC-2013-SyG. 610028-IMBALANCE-P. We thank Hugo Valin for his suggestion to use the Global Burden of Disease datasets for modelling the health risk of red meat consumption. We thank Ansa Heyl for a language check.

Author information




S.E. designed the research. S.E., G.R. and M.O. conceptualized the model. S.E. developed the model, conducted the analysis and wrote the manuscript with contributions from G.R. and M.O. All authors contributed to the discussion and interpretation of the results.

Corresponding author

Correspondence to Sibel Eker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figs. 1–18, Supplementary Tables 1–3, Supplementary References 1–11

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eker, S., Reese, G. & Obersteiner, M. Modelling the drivers of a widespread shift to sustainable diets. Nat Sustain 2, 725–735 (2019).

Download citation

Further reading