Impact of globalization on the resilience and sustainability of natural resources


Material flows—such as food trade—allow human societies to rely on natural resources available both locally and in other regions of the planet. Thus, in a globalized world, multiple pools of the same resource are often harvested by multiple users through a network of interactions. It is not clear to what extent the interconnectedness, structure and modularity (that is, when subsystems of nodes exhibit stronger internal connectivity) of such a network may affect the resilience of the system. Here, we develop a theoretical framework to investigate the impact of globalization on the sustainable use of natural resources for food production. We find that the resilience of the system may either increase or decrease with the network’s interconnectedness and modularity, depending on the network structure. Global food trade exhibits a heterogeneous structure and its resilience is decreasing with the increase in connectivity of the past few decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual representation of the interconnected use of resources, such as those needed for food production.
Fig. 2: Equilibrium states, values of ηeff, and of the sustainable state probability as a function of network structure.
Fig. 3: Values of ηeff and of the sustainable state probability as a function of connectivity in homogeneous and heterogeneous Barabasi–Albert networks.
Fig. 4: Values of ηeff and of the sustainable state probability as a function of modularity in homogeneous and heterogeneous modular networks.
Fig. 5: Associations between resilience, connectivity, ηeff, modularity and time.

Data availability

The datasets and code used during the current study are available in the OSF repository with the access code fkbdp (


  1. 1.

    De Vries, B. J. Sustainability Science (Cambridge Univ. Press, 2012).

  2. 2.

    Runyan, C. & D’Odorico, P. Global Deforestation (Cambridge Univ. Press, 2016).

  3. 3.

    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Montgomery, D. R. Dirt: The Erosion of Civilizations (Univ. California Press, 2012).

  6. 6.

    Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).

    Article  Google Scholar 

  7. 7.

    Suweis, S. & D’Odorico, P. Early warning signs in social-ecological networks. PLoS ONE 9, e101851 (2014).

    Article  Google Scholar 

  8. 8.

    Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Article  Google Scholar 

  9. 9.

    D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L. & Vandoni, S. Feeding humanity through global food trade. Earths Future 2, 458–469 (2014).

    Article  Google Scholar 

  10. 10.

    Carr, J. A., D’Odorico, P., Laio, F. & Ridolfi, L. On the temporal variability of the virtual water network. Geophys. Res. Lett. 39, L06404 (2012).

    Article  Google Scholar 

  11. 11.

    Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K. & Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Change 23, 433–438 (2013).

    Article  Google Scholar 

  12. 12.

    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    MacDonald, G. K. Eating on an interconnected planet. Environ. Res. Lett. 8, 021002 (2013).

    Article  Google Scholar 

  15. 15.

    May, R. M. Stability and Complexity in Model Ecosystems Vol. 6 (Princeton Univ. Press, 2001).

  16. 16.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Busiello, D. M., Suweis, S., Hidalgo, J. & Maritan, A. Explorability and the origin of network sparsity in living systems. Sci. Rep. 7, 12323 (2017).

    Article  Google Scholar 

  18. 18.

    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–895 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Suweis, S., Grilli, J., Banavar, J. R., Allesina, S. & Maritan, A. Effect of localization on the stability of mutualistic ecological networks. Nat. Commun. 6, 10179 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article  Google Scholar 

  24. 24.

    Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

    Article  Google Scholar 

  25. 25.

    Kefi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).

    Article  Google Scholar 

  26. 26.

    Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008).

    Article  Google Scholar 

  27. 27.

    Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation (Oxford Univ. Press, 2008).

  28. 28.

    Cobb, C. W. & Douglas, P. H. A theory of production. Am. Econ. Rev. 18, 139–165 (1928).

    Google Scholar 

  29. 29.

    Suweis, S., Rinaldo, A., Maritan, A. & D’Odorico, P. Water-controlled wealth of nations. Proc. Natl Acad. Sci. USA 110, 4230–4233 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Tu, C., Grilli, J., Schuessler, F. & Suweis, S. Collapse of resilience patterns in generalized Lotka–Volterra dynamics and beyond. Phys. Rev. E 95, 062307 (2017).

    Article  Google Scholar 

  32. 32.

    Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  Google Scholar 

  33. 33.

    Price, D. J. d. S. Networks of scientific papers. Science 149, 510–515 (1965).

    CAS  Article  Google Scholar 

  34. 34.

    Price, D. D. S. A general theory of bibliometric and other cumulative advantage processes. J. Assoc. Inf. Sci. Technol. 27, 292–306 (1976).

    Google Scholar 

  35. 35.

    Zhong, W., An, H., Gao, X. & Sun, X. The evolution of communities in the international oil trade network. Physica A Stat. Mech. Appl. 413, 42–52 (2014).

    Article  Google Scholar 

  36. 36.

    Maluck, J. & Donner, R. V. A network of networks perspective on global trade. PLoS ONE 10, e0133310 (2015).

    Article  Google Scholar 

  37. 37.

    Fader, M., Gerten, D., Krause, M., Lucht, W. & Cramer, W. Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 8, 014046 (2013).

    Article  Google Scholar 

  38. 38.

    Marchand, P. et al. Reserves and trade jointly determine exposure to food supply shocks. Environ. Res. Lett. 11, 095009 (2016).

    Article  Google Scholar 

  39. 39.

    Motesharrei, S., Rivas, J. & Kalnay, E. Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies. Ecol. Econ. 101, 90–102 (2014).

    Article  Google Scholar 

  40. 40.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Motesharrei, S. et al. Modeling sustainability: population, inequality, consumption, and bidirectional coupling of the Earth and human systems. Nat. Sci. Rev. 3, 470–494 (2016).

    Google Scholar 

  43. 43.

    FAOSTAT (FAO, 2018);

Download references


C.T. acknowledges financial support from Yunnan University project C176210103. S.S. acknowledges the University of Padova for SID 2017 and Stars 2018 grants.

Author information




C.T. conceived the study, performed the calculations and wrote the paper. S.S. and P.D. conceived the study, supervised the work and wrote the paper.

Corresponding author

Correspondence to Paolo D’Odorico.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Figures 1–13, Supplementary Table 1, Supplementary References 1–15

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tu, C., Suweis, S. & D’Odorico, P. Impact of globalization on the resilience and sustainability of natural resources. Nat Sustain 2, 283–289 (2019).

Download citation

Further reading