Global forecasts of shipping traffic and biological invasions to 2050

Abstract

Socioeconomic factors, including population growth, global trade and the worldwide transport of materials, interact with environmental drivers to determine the sustainability of natural systems. We focus on the global shipping network, which is central to invasive species spread worldwide. We explain 90% of the variation in global shipping traffic and a twofold increase in shipping using basic socioeconomic indicators and a temporal validation set. Combining our model with global economic development scenarios, we project global maritime traffic to increase by 240–1,209% by 2050. Integrating our predictions with global climate change projections and shipping-mediated invasion models, we forecast invasion risk to surge in middle-income countries, particularly in Northeast Asia. Shipping growth will have a far greater effect on marine invasions than climate-driven environmental changes: while climate change might actually decrease the average probability of invasion, the emerging global shipping network could yield a 3- to 20-fold increase in global invasion risk.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Decadal projections of total inter-SER traffic.
Fig. 2: Shipping vessel movements.
Fig. 3: Invasions into each SER under different conditions.
Fig. 4: Breakdown of invasion risk by source SER for each destination SER in 2050 under ‘status-quo’ shipping projections (SSP2: ‘middle-of-the-road’).

Code availability

Code underlying the results will be made available upon request.

Data availability

Historical GDP and population data were obtained from the World Bank Databank (http://databank.worldbank.org/), and forecasted values are accessible through the IIASA SSP database (https://tntcat.iiasa.ac.at/SspDb/). Data on inter-country distance, trade agreements, common language, common border and common colonial history are obtainable through the CEPII research centre’s GeoDist and Gravity datasets (http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp). Data on historical ballast releases can be accessed through the NBIC Database (https://invasions.si.edu/nbic/search.html). Current and forecasted environmental variables used in this study are available from the AquaMaps Environmental Dataset (https://www.aquamaps.org/main/envt_data.php). Data on ship movements and attributes were purchased from IHS Sea-web, are used under license and cannot be publicly shared by the authors. However, these data can be purchased from IHS (https://maritime.ihs.com).

References

  1. 1.

    Carrasco, L. R., Chan, J., McGrath, F. & Nghiem, L. Biodiversity conservation in a telecoupled world. Ecol. Soc. 22, 24 (2017).

    Article  Google Scholar 

  2. 2.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2016).

    Article  Google Scholar 

  3. 3.

    Liu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Review of Maritime Transport 2017 (United Nations, 2017).

  5. 5.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    Article  Google Scholar 

  6. 6.

    Hewitt, C. L., Gollasch, S. & Minchin, D. in Biological Invasions in Marine Ecosystems 117–131 (Springer, Berlin & Heidelberg, 2009).

  7. 7.

    Brockerhoff, E. G., Kimberley, M., Liebhold, A. M., Haack, R. A. & Cavey, J. F. Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology 95, 594–601 (2014).

    Article  Google Scholar 

  8. 8.

    Hudgins, E. J., Liebhold, A. M. & Leung, B. Predicting the spread of all invasive forest pests in the United States. Ecol. Lett. 20, 426–435 (2017).

    Article  Google Scholar 

  9. 9.

    Kaluza, P., Kölzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).

    Article  Google Scholar 

  10. 10.

    Seebens, H., Schwartz, N., Schupp, P. J. & Blasius, B. Predicting the spread of marine species introduced by global shipping. Proc. Natl Acad. Sci. USA 113, 5646–5651 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Ware, C. et al. Climate change, non‐indigenous species and shipping: assessing the risk of species introduction to a high‐Arctic archipelago. Divers. Distrib. 20, 10–19 (2014).

    Article  Google Scholar 

  12. 12.

    Floerl, O., Rickard, G., Inglis, G. & Roulston, H. Predicted effects of climate change on potential sources of non‐indigenous marine species. Divers. Distrib. 19, 257–267 (2013).

    Article  Google Scholar 

  13. 13.

    Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).

    Article  Google Scholar 

  14. 14.

    Tournadre, J. Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett. 41, 7924–7932 (2014).

    Article  Google Scholar 

  15. 15.

    Stopford, M. Maritime Economics 3e (Routledge, 2009).

  16. 16.

    Wang, M. The rise of container tonnage and port developments in East Asia. Bus. Manag. Stud. 1, 189–198 (2015).

    Article  Google Scholar 

  17. 17.

    Baldwin, R. & Taglioni, D. Gravity for Dummies and Dummies for Gravity Equations Working Paper 12516 (NBER, 2006).

  18. 18.

    Gómez-Herrera, E. Comparing alternative methods to estimate gravity models of bilateral trade. Empir. Econ. 44, 1087–1111 (2013).

    Article  Google Scholar 

  19. 19.

    Santos Silva, J. & Tenreyro, S. The log of gravity. Rev. Econ. Stat. 88, 641–658 (2006).

    Article  Google Scholar 

  20. 20.

    Seebens, H., Gastner, M. T. & Blasius, B. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16, 782–790 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    Nakicenovic, N. et al. Special Report on Emissions Scenarios (SRES) (IPCC, Cambridge Univ. Press, 2000).

  22. 22.

    Rounsevell, M. D. & Metzger, M. J. Developing qualitative scenario storylines for environmental change assessment. Wiley Interdiscip. Rev. Clim. Change 1, 606–619 (2010).

    Article  Google Scholar 

  23. 23.

    Wiebe, K. et al. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 085010 (2015).

    Article  Google Scholar 

  24. 24.

    Bijl, D. L., Bogaart, P. W., Kram, T., de Vries, B. J. & van Vuuren, D. P. Long-term water demand for electricity, industry and households. Environ. Sci. Pol. 55, 75–86 (2016).

    Article  Google Scholar 

  25. 25.

    Chen, K. et al. Impact of climate change on heat-related mortality in Jiangsu Province, China. Environ. Pollut. 224, 317–325 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Alfieri, L., Feyen, L., Dottori, F. & Bianchi, A. Ensemble flood risk assessment in Europe under high end climate scenarios. Glob. Environ. Change 35, 199–212 (2015).

    Article  Google Scholar 

  27. 27.

    Bradie, J., Pietrobon, A. & Leung, B. Beyond species-specific assessments: an analysis and validation of environmental distance metrics for non-indigenous species risk assessment. Biol. Invasions 17, 3455–3465 (2015).

    Article  Google Scholar 

  28. 28.

    Keller, R. P., Drake, J. M., Drew, M. B. & Lodge, D. M. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers. Distrib. 17, 93–102 (2011).

    Article  Google Scholar 

  29. 29.

    Della Venezia, L., Samson, J. & Leung, B. The rich get richer: invasion risk across North America from the aquarium pathway under climate change. Divers. Distrib. 24, 285–296 (2018).

    Article  Google Scholar 

  30. 30.

    Leung, B., Springborn, M. R., Turner, J. A. & Brockerhoff, E. G. Pathway‐level risk analysis: the net present value of an invasive species policy in the US. Front. Ecol. Environ. 12, 273–279 (2014).

    Article  Google Scholar 

  31. 31.

    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions 10, 391–398 (2008).

    Article  Google Scholar 

  32. 32.

    Steinberger, J. K., Krausmann, F. & Eisenmenger, N. Global patterns of materials use: a socioeconomic and geophysical analysis. Ecol. Econ. 69, 1148–1158 (2010).

    Article  Google Scholar 

  33. 33.

    Filippini, C. & Molini, V. The determinants of East Asian trade flows: a gravity equation approach. J. Asian Econ. 14, 695–711 (2003).

    Article  Google Scholar 

  34. 34.

    Oguledo, V. & MacPhee, C. R. Gravity models: a reformulation and an application to discriminatory trade arrangements. Appl. Econ. 26, 107–120 (1994).

    Article  Google Scholar 

  35. 35.

    Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237–244 (2008).

    Article  Google Scholar 

  36. 36.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  38. 38.

    Chen, J. & Liu, X. Transport: Nicaragua Canal may not benefit shipping. Nature 533, 321 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Chen, J., Zeng, X. & Deng, Y. Environmental pollution and shipping feasibility of the Nicaragua Canal. Mar. Pollut. Bull. 113, 87–93 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Chan, F. T., Bailey, S. A., Wiley, C. J. & MacIsaac, H. J. Relative risk assessment for ballast-mediated invasions at Canadian Arctic ports. Biol. Invasions 15, 295–308 (2013).

    Article  Google Scholar 

  41. 41.

    Ho, J. The implications of Arctic sea ice decline on shipping. Mar. Policy 34, 713–715 (2010).

    Article  Google Scholar 

  42. 42.

    Miller, A. W. & Ruiz, G. M. Arctic shipping and marine invaders. Nat. Clim. Change 4, 413–416 (2014).

    Article  Google Scholar 

  43. 43.

    Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans‐Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).

    Article  Google Scholar 

  44. 44.

    Smith, L. C. & Stephenson, S. R. New trans-Arctic shipping routes navigable by midcentury. Proc. Natl Acad. Sci. USA 110, E1191–E1195 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Lasserre, F. Case studies of shipping along Arctic routes. Analysis and profitability perspectives for the container sector. Transp. Res. Pt A 66, 144–161 (2014).

    Google Scholar 

  46. 46.

    Lasserre, F. & Pelletier, S. Polar super seaways? Maritime transport in the Arctic: an analysis of shipowners’ intentions. J. Transp. Geogr. 19, 1465–1473 (2011).

    Article  Google Scholar 

  47. 47.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. AIBS Bull. 57, 573–583 (2007).

    Google Scholar 

  48. 48.

    Rodrigue, J. P. & Notteboom, T. Foreland-based regionalization: integrating intermediate hubs with port hinterlands. Res. Transp. Econ. 27, 19–29 (2010).

    Article  Google Scholar 

  49. 49.

    Anderson, J. E. & Van Wincoop, E. Gravity with gravitas: a solution to the border puzzle. Am. Econ. Rev. 93, 170–192 (2003).

    Article  Google Scholar 

  50. 50.

    LeSage, J. P. & Pace, R. K. Spatial econometric modeling of origin–destination flows. J. Reg. Sci. 48, 941–967 (2008).

    Article  Google Scholar 

  51. 51.

    Xu, J., Wickramarathne, T. L. & Chawla, N. V. Representing higher-order dependencies in networks. Sci. Adv. 2, e1600028 (2016).

    Article  Google Scholar 

  52. 52.

    Stachowicz, J. J., Whitlatch, R. B. & Osman, R. W. Species diversity and invasion resistance in a marine ecosystem. Science 286, 1577–1579 (1999).

    CAS  Article  Google Scholar 

  53. 53.

    Levin, L. A. & Bridges, T. S. in Ecology of Marine Invertebrate Larvae 1–48 (CRC Press, Boca Raton, 1995).

  54. 54.

    Leung, B. et al. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15, 1475–1493 (2012).

    Article  Google Scholar 

  55. 55.

    Davidson, I. et al. Mini-review: assessing the drivers of ship biofouling management—aligning industry and biosecurity goals. Biofouling 32, 411–428 (2016).

    Article  Google Scholar 

  56. 56.

    Bailey, S. A. et al. Evaluating efficacy of an environmental policy to prevent biological invasions. Environ. Sci. Technol. 45, 2554–2561 (2011).

    CAS  Article  Google Scholar 

  57. 57.

    Mannion, A. Global Environmental Change: A Natural and Cultural Environmental History (Routledge, 2014).

  58. 58.

    Mayer, T. & Zignago, S. Notes on CEPII’s Distances Measures: The GeoDist Database CEPII Working Paper 2011-25 (CEPII, 2011).

  59. 59.

    Head, K. & Mayer, T. in Handbook of International Economics Vol. 4 Ch. 3 131–195 (Elsevier, 2014).

  60. 60.

    NBIC Database (Smithsonian Environmental Research Center & United States Coast Guard, 2016); http://invasions.si.edu/nbic/search.html

  61. 61.

    Kaschner, K. et al. AquaMaps: predicted range maps for aquatic species. Version 08/2016 (2016); www.aquamaps.org

  62. 62.

    Anderson, J. E. A theoretical foundation for the gravity equation. Am. Econ. Rev. 69, 106–116 (1979).

    Google Scholar 

  63. 63.

    Anderson, J. E. The gravity model. Annu. Rev. Econ. 3, 133–160 (2011).

    Article  Google Scholar 

  64. 64.

    Eaton, J. & Kortum, S. Technology, geography, and trade. Econometrica 70, 1741–1779 (2002).

    Article  Google Scholar 

  65. 65.

    Bouet, A., Mishra, S. & Roy, D. Does Africa Trade Less than it Should, and If So, Why? The Role of Market Access and Domestic Factors (International Food Policy Research Institute, 2008).

  66. 66.

    Bitzenis, A. Explanatory variables for low western investment interest in Bulgaria. East. Eur. Econ. 42, 5–38 (2004).

    Article  Google Scholar 

  67. 67.

    Lesage, P. J. & Polasek, W. Incorporating transportation network structure in spatial econometric models of commodity flows. Spat. Econ. Anal. 3, 225–245 (2008).

    Article  Google Scholar 

  68. 68.

    Hijmans, R. J. geosphere: Spherical trigonometry. R package version 1.5-7 (2017).

  69. 69.

    Bacchetta, M. et al. A Practical Guide to Trade Policy Analysis (World Trade Organization & United Nations Conference on Trade and Development, 2012).

Download references

Acknowledgements

We thank L. Della Venezia, E. Hudgins, G. Inglis, E. Johnston, D. Nguyen, G. Ruiz and S. Varadarajan for helpful discussions. This research was supported by an NSERC-CGSM grant to A.S., and an NSERC-CAISN and NSERC-Discovery grant to B.L.

Author information

Affiliations

Authors

Contributions

A.S. and B.L. designed the study, analysed the data and wrote the manuscript. E.S. contributed experience and perspectives relating to socioeconomic, shipping and trade components. All of the authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to Anthony Sardain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Supplementary Discussion, Supplementary Tables 1–4, Supplementary Figures 1–5, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat Sustain 2, 274–282 (2019). https://doi.org/10.1038/s41893-019-0245-y

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing