Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

An analytical framework for spatially targeted management of natural capital

A major sustainability challenge is determining where to target management to enhance natural capital and the ecosystem services it provides. Achieving this understanding is difficult, given that the effects of most actions vary according to wider environmental conditions; and this context dependency is typically poorly understood. Here, we describe an analytical framework that helps meet this challenge by identifying both why and where management actions are most effective for enhancing natural capital across large geographic areas. We illustrate the framework’s generality by applying it to two examples for Britain: pond water quality and invasion of forests by rhododendron.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analytical framework outline.
Fig. 2: Cross-scale interactions of the effects of landscape-level drivers on ecosystem responses.

Similar content being viewed by others

Data availability

The data used in this study are available from Forest Research and the Centre for Ecology and Hydrology but restrictions apply to their availability. These were used under licence for the current study and are not publicly available.

References

  1. Seppelt, R., Lautenbach, S. & Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 5, 458–463 (2013).

    Article  Google Scholar 

  2. Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).

    Article  Google Scholar 

  3. Maseyk, F. J. F., Mackay, A. D., Possingham, H. P., Dominati, E. J. & Buckley, Y. M. Managing natural capital stocks for the provision of ecosystem services. Conserv. Lett. 10, 211–220 (2017).

    Article  Google Scholar 

  4. Darling, E. S. & Côté, I. M. Quantifying the evidence for ecological synergies. Ecol. Lett. 11, 1278–1286 (2008).

    Article  Google Scholar 

  5. Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).

    Article  Google Scholar 

  6. Peters, D. P. C., Bestelmeyer, B. T. & Turner, M. G. Cross-scale interactions and changing pattern-process relationships: consequences for system dynamics. Ecosystems 10, 790–796 (2007).

    Article  Google Scholar 

  7. Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified? J. Appl. Ecol. 54, 358–370 (2017).

    Article  Google Scholar 

  8. Maes, J. et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 1, 31–39 (2012).

    Article  Google Scholar 

  9. Wong, C. P., Jiang, B., Kinzig, A. P., Lee, K. N. & Ouyang, Z. Linking ecosystem characteristics to final ecosystem services for public policy. Ecol. Lett. 18, 108–118 (2015).

    Article  Google Scholar 

  10. Rieb, J. T. et al. When, where, and how nature matters for ecosystem services: challenges for the next generation of ecosystem service models. Bioscience 67, 820–833 (2017).

    Article  Google Scholar 

  11. Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause-effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).

    Article  Google Scholar 

  12. Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. WIREs Clim. Change 5, 317–335 (2014).

    Article  Google Scholar 

  13. Jones, K. B. et al. Informing landscape planning and design for sustaining ecosystem services from existing spatial patterns and knowledge. Landsc. Ecol. 28, 1175–1192 (2013).

    Article  Google Scholar 

  14. Smart, S. M. et al. Clarity or confusion? Problems in attributing large-scale ecological changes to anthropogenic drivers. Ecol. Indic. 20, 51–56 (2012).

    Article  Google Scholar 

  15. Cheruvelil, K. S., Soranno, P. A., Webster, K. E. & Bremigan, M. T. Multi-scaled drivers of ecosystem state: quantifying the importance of the regional spatial scale. Ecol. Appl. 23, 1603–1618 (2013).

    Article  CAS  Google Scholar 

  16. Iannone, B. V. et al. Region-specific patterns and drivers of macroscale forest plant invasions. Divers. Distrib. 21, 1181–1192 (2015).

    Article  Google Scholar 

  17. Dixon Hamil, K. A., Iannone, B. V., Huang, W. K., Fei, S. & Zhang, H. Cross-scale contradictions in ecological relationships. Landsc. Ecol. 31, 7–18 (2016).

    Article  Google Scholar 

  18. Dorioz, J. M., Wang, D., Poulenard, J. & Trévisan, D. The effect of grass buffer strips on phosphorus dynamics: a critical review and synthesis as a basis for application in agricultural landscapes in France. Agric. Ecosyst. Environ. 117, 4–21 (2006).

    Article  CAS  Google Scholar 

  19. Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2008).

    Article  Google Scholar 

  20. Larson, D. L. et al. A framework for sustainable invasive species management: environmental, social, and economic objectives. J. Environ. Manage. 92, 14–22 (2011).

    Article  Google Scholar 

  21. Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).

    Article  Google Scholar 

  22. Edwards, C. Managing and Controlling Invasive Rhododendron (Forestry Commission, 2006).

  23. Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597, 1–6 (2008).

    Article  Google Scholar 

  24. Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).

    Article  Google Scholar 

  25. Carey, P. D. et al. in Countryside Survey UK: Results from 2007 Ch. 1 2–17 (2009).

  26. Williams, P. et al. Countryside Survey: Ponds Report from 2007 (NERC/Centre for Ecology and Hydrology, 2010).

  27. Heffernan, J. B. et al. Macrosystems ecology: understanding ecological patterns and processes at continental scales. Front. Ecol. Environ. 12, 5–14 (2014).

    Article  Google Scholar 

  28. Wu, J. & David, J. L. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecol. Modell. 153, 7–26 (2002).

    Article  Google Scholar 

  29. Allen, T. F. & Starr, T. Hierarchy: Perspectives for Ecological Complexity (Univ. Chicago Press, 1982).

  30. Jensen, M. E., Bourgeron, P., Everett, R. & Goodman, I. Ecosystem management : a landscape ecology perspective. J. Am. Water Res. Assoc. 32, 203–216 (1996).

  31. Wu, J. in Linking Ecology and Ethics for a Changing World: Values, Philosophy, and Action (eds. Rozzi, R., Pickett, S., Palmer, C., Armesto, J. J. & Callicott, J. B.) 281–302 (Springer, 2013).

  32. Allen, T. F. H. in Ecosystem Ecology: A Derivative of Encyclopedia of Ecology (ed. Jorgensen, S. E.) 114–120 (Elsevier, 2009).

  33. Peters, D. P. C. et al. Living in an increasingly connected world: a framework for continental-scale environmental science. Front. Ecol. Environ. 6, 229–237 (2008).

    Article  Google Scholar 

  34. Allan, J. D. & Johnson, L. B. Catchment-scale analysis of aquatic ecosystems. Freshw. Biol. 37, 107–111 (1997).

    Article  Google Scholar 

  35. Holland, J. D. & Yang, S. Multi-scale studies and the ecological neighborhood. Curr. Landsc. Ecol. Rep. 1, 135–145 (2016).

    Article  Google Scholar 

  36. Stephenson, C. M., MacKenzie, M. L., Edwards, C. & Travis, J. M. J. Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell. 193, 747–758 (2006).

    Article  Google Scholar 

  37. Cross, J. R. Biological flora of the British Isles: Rhododendron ponticum. J. Ecol. 63, 345–364 (1975).

    Article  Google Scholar 

  38. Purse, B. V., Graeser, P., Searle, K., Edwards, C. & Harris, C. Challenges in predicting invasive reservoir hosts of emerging pathogens: mapping Rhododendron ponticum as a foliar host for Phytophthora ramorum and Phytophthora kernoviae in the UK. Biol. Invasions 15, 529–545 (2013).

    Article  Google Scholar 

  39. Jones, K. B. et al. The consequences of landscape change on ecological resources: an assessment of the United States mid-Atlantic region, 1973–1993. Ecosyst. Heal. 7, 229–242 (2001).

    Article  Google Scholar 

  40. Jones, K. B. et al. in Scaling and Uncertainty Analysis in Ecology 205–224 (2006).

  41. Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Chang. Biol. 12, 635–643 (2006).

    Article  Google Scholar 

  42. Mosley, M. Delimitation of New Zealand hydrological regions. J. HydroI. 49, 173–192 (1981).

    Article  Google Scholar 

  43. Spence, N. A. A Multifactor uniform regionalization of British counties on the basis of employment data for 1961. Reg. Stud. 2, 87–104 (1968).

    Article  Google Scholar 

  44. Cheruvelil, K. S. et al. Creating multithemed ecological regions for macroscale ecology: testing a flexible, repeatable, and accessible clustering method. Ecol. Evol. 7, 3046–3058 (2017).

    Article  Google Scholar 

  45. White, D. Climate regionalization and rotation of principal components. Int. J. Climatol. 11, 1–25 (1991).

    Article  Google Scholar 

  46. Soranno, P. A., Cheruvelil, K. S., Wagner, T., Webster, K. E. & Bremigan, M. T. Effects of land use on lake nutrients: the importance of scale, hydrologic connectivity, and region. PLoS ONE 10, 1–22 (2015).

    Article  Google Scholar 

  47. Iannone, B. V. et al. Evidence of biotic resistance to invasions in forests of the Eastern USA. Landsc. Ecol. 31, 85–99 (2016).

    Article  Google Scholar 

  48. Spake, R. et al. Unpacking ecosystem service bundles: towards predictive mapping of synergies and trade-offs between ecosystem services. Glob. Environ. Change 47, 37–50 (2017).

    Article  Google Scholar 

  49. Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).

    Article  Google Scholar 

  50. Miguet, P., Jackson, H. B., Jackson, N. D., Martin, A. E. & Fahrig, L. What determines the spatial extent of landscape effects on species? Landsc. Ecol. 31, 1177–1194 (2016).

    Article  Google Scholar 

  51. Dramstad, W. E., Tveit, M. S., Fjellstad, W. J. & Fry, G. L. A. Relationships between visual landscape preferences and map-based indicators of landscape structure. Landsc. Urban Plan. 78, 465–474 (2006).

    Article  Google Scholar 

  52. Holland, J. D., Bert, D. G. & Fahrig, L. Determining the spatial scale of species’ response to habitat. Bioscience 54, 227 (2004).

    Article  Google Scholar 

  53. Vilà, M. & Ibáñez, I. Plant invasions in the landscape. Landsc. Ecol. 26, 461–472 (2011).

    Article  Google Scholar 

  54. Novikmec, M. et al. Ponds and their catchments: size relationships and influence of land use across multiple spatial scales. Hydrobiologia 774, 155–166 (2015).

    Article  Google Scholar 

  55. Morton, R. D. et al. Land Cover Map2007 (25m raster, GB) v. 1.2 (NERC Environmental Information Data Centre, 2014).

  56. Qiu, J. & Turner, M. G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed. Ecosphere 6, 1–19 (2015).

    Article  CAS  Google Scholar 

  57. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer, 2002).

  58. Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J. & Benton, T. G. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods Ecol. Evol. 4, 167–174 (2013).

    Article  Google Scholar 

  59. Freckleton, R. P. Dealing with collinearity in behavioural and ecological data: model averaging and the problems of measurement error. Behav. Ecol. Sociobiol. 65, 91–101 (2011).

    Article  Google Scholar 

  60. Bartoń, K. MuMIn: Multi-modal inference. Model selection and model averaging based on information criteria (AICc and alike). R package version 1.42.1 (2018).

  61. Lefcheck, J. S. PIECEWISESEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).

    Article  Google Scholar 

  62. Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    Article  CAS  Google Scholar 

  63. Turner, M. G. & Gardner, R. H. Landscape Ecology in Theory and Practice. Pattern and Process (Springer, 2015).

  64. Turner, M. G., Donato, D. C. & Romme, W. H. Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: priorities for future research. Landsc. Ecol. 28, 1081–1097 (2013).

    Article  Google Scholar 

  65. Johnson, P. O. & Neyman, J. Tests of certain linear hypotheses and their application to some educational problems. Stat. Res. Mem. 1, 57–93 (1936).

    Google Scholar 

  66. Mcdowell, R. W., Sharpley, A. N., Condron, L. M., Haygarth, P. M. & Brookes, P. C. Processes controlling soil phosphorus release to runoff and implications for agricultural management. Nutr. Cycl. Agroecosystems 59, 269–284 (2001).

    Article  Google Scholar 

  67. Verhagen, W. et al. Effects of landscape configuration on mapping ecosystem service capacity: a review of evidence and a case study in Scotland. Landsc. Ecol. 31, 1457–1479 (2016).

    Article  Google Scholar 

  68. De Knegt, H. J. et al. Spatial autocorrelation and the scaling of species–environment relationships. Ecology 91, 2455–2465 (2010).

    Article  Google Scholar 

  69. Scholes, R. J., Reyers, B., Biggs, R., Spierenburg, M. J. & Duriappah, A. Multi-scale and cross-scale assessments of social-ecological systems and their ecosystem services. Curr. Opin. Environ. Sustain. 5, 16–25 (2013).

    Article  Google Scholar 

  70. Gergel, S. E. Spatial and non-spatial factors: when do they affect landscape indicators of watershed loading? Landsc. Ecol. 20, 177–189 (2005).

    Article  Google Scholar 

  71. Watts, K. et al. Using historical woodland creation to construct a long-term, large-scale natural experiment: the WrEN project. Ecol. Evol. 6, 3012–3025 (2016).

    Article  Google Scholar 

  72. Gillespie, M. A. K. et al. A method for the objective selection of landscape-scale study regions and sites at the national level. Methods Ecol. Evol. 8, 1468–1476 (2017).

    Article  Google Scholar 

  73. Steel, A., Kennedy, M. C., Cunningham, P. G. & Stanovick, J. S. Applied statistics in ecology: common pitfalls and simple solutions. Ecosphere 4, 1–13 (2013).

    Article  Google Scholar 

  74. Maskell, L. C. et al. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571 (2013).

    Article  Google Scholar 

  75. Emmett, B. A. et al. Spatial patterns and environmental constraints on ecosystem services at a catchment scale. Sci. Total Environ. 572, 1586–1600 (2016).

    Article  CAS  Google Scholar 

  76. Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Sub-optimal study design has major impacts on landscape-scale inference. Biol. Conserv. 144, 298–305 (2011).

    Article  Google Scholar 

  77. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  78. Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl Acad. Sci. USA 107, 5242–5247 (2010).

    Article  CAS  Google Scholar 

  79. Cross, J. R. The establishment of Rhododendron ponticum in the Killarney oakwoods. J. Ecol. 69, 807–824 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Catford and B. Ditchburn for advice on variables to consider for invasive species modelling. Thanks also to J. Lefcheck and J. Forster for invaluable discussions on statistical approaches. This research was funded by the ERC Starting Grant ‘SCALEFORES’ (grant no. 680176) awarded to F.E.

Author information

Authors and Affiliations

Authors

Contributions

F.E., J.M.B. and K.W. conceived the project ‘SCALEFORES’. R.Sp., C.B., L.G., J.M.B., K.W., R.Sc., L.N. and F.E. designed the analytical framework and case study designs. R.Sp., C.B., C.W. and R.Sc. carried out all statistical and GIS analyses. T.W., C.W. and C.B. collated and supplied data. R.Sp., C.B. and F.E. wrote the manuscript. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Rebecca Spake.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–9, Supplementary Figs. 1–8 and Supplementary References 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spake, R., Bellamy, C., Graham, L.J. et al. An analytical framework for spatially targeted management of natural capital. Nat Sustain 2, 90–97 (2019). https://doi.org/10.1038/s41893-019-0223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-019-0223-4

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene