The global extent of biodiversity offset implementation under no net loss policies


‘No net loss’ (NNL) biodiversity policies, which seek to neutralize ongoing biodiversity losses caused by economic development activities, are applicable worldwide. Yet, there has been no global assessment concerning practical measures actually implemented under NNL policies. Here, we systematically map the global implementation of biodiversity offsets (‘offsets’)—a crucial yet controversial NNL practice. We find, first, that offsets occupy an area up to two orders of magnitude larger than previously suggested: 12,983 offset projects extending over \(153,679_{ - 64,223}^{ + 25,013}\) km2 across 37 countries. Second, offsets are far from homogeneous in implementation, and emerging economies (particularly in South America) are more dominant in terms of global offsetting area than expected. Third, most offset projects are very small, and the overwhelming majority (99.7%) arise through regulatory requirements rather than prominent project finance safeguards. Our database provides a sampling frame via which future studies could evaluate the efficacy of NNL policies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spatial information from the biodiversity offset database.
Fig. 2: Key characteristics of biodiversity offsets extracted from the database.
Fig. 3: Frequency distribution of offsets by area, with examples from various countries.

Data availability

All biodiversity offset data have been collated into a single database that accompanies this article. The database is available from the corresponding author upon request, and will also be included within the IUCN Global Inventory of Biodiversity Offset Policies ( Specific sources for each entry, including URLs, are listed in the database.


  1. 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  2. 2.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

  3. 3.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

  4. 4.

    Maron, M. et al. Taming a wicked problem: resolving controversies in biodiversity offsetting. BioScience 66, 489–498 (2016).

  5. 5.

    Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018).

  6. 6.

    Gardner, T. A. et al. Biodiversity offsets and the challenge of achieving no net loss. Conserv. Biol. 27, 1254–1264 (2013).

  7. 7.

    Ives, C. D. & Bekessy, S. A. The ethics of offsetting nature. Front. Ecol. Environ. 13, 568–573 (2015).

  8. 8.

    Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).

  9. 9.

    Calvet, C., Guillaume, O. & Claude, N. Tracking the origins and development of biodiversity offsetting in academic research and its implications for conservation: a review. Biol. Conserv. 192, 492–503 (2015).

  10. 10.

    Bull, J. W. et al. Data transparency regarding the implementation of European ‘no net loss’ biodiversity policies. Biol. Conserv. 218, 64–72 (2018).

  11. 11.

    Pickett, E. J. et al. Achieving no net loss in habitat offset of a threatened frog required high offset ratio and intensive monitoring. Biol. Conserv. 157, 156–162 (2013).

  12. 12.

    Lindenmayer, D. B. et al. The anatomy of a failed offset. Biol. Conserv. 210, 286–292 (2017).

  13. 13.

    Sahley, C. T. et al. Quantifying impact reduction due to avoidance, minimization and restoration for a natural gas pipeline in the Peruvian Andes. Environ. Imp. Ass. Rev. 66, 53–65 (2017).

  14. 14.

    Quigley, J. T. & Harper, D. J. Effectiveness of fish habitat compensation in Canada in achieving no net loss. Environ. Manage. 37, 351–366 (2006).

  15. 15.

    Levrel, H., Scemama, P. & Vaissiere, A.-C. Should we be wary of mitigation banking? Evidence regarding the risks associated with this wetland offset arrangement in Florida. Ecol. Econ. 135, 136–149 (2017).

  16. 16.

    Bennett, G, Gallant, M. & ten Kate, K. State of Biodiversity Mitigation 2017: Markets and Compensation for Global Infrastructure Development (Forest Trends, 2017).

  17. 17.

    Sonter, L. J. et al. Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services. Front. Ecol. Environ. 16, 143–148 (2018).

  18. 18.

    Soares-Filho, B. et al. Cracking Brazil's forest code. Science 344, 363–364 (2014).

  19. 19.

    Saenz, S. et al. Development by design in Colombia: making mitigation decisions consistent with conservation outcomes. PLoS ONE 8, e81831 (2013).

  20. 20.

    Alix-Garcia, J. M., Shapiro, E. N. & Sims, K. R. E. Forest conservation and slippage: evidence from Mexico's national payments for ecosystem services program. Land Econ. 88, 613–638 (2012).

  21. 21.

    Villarroya, A., Barros, A. B. & Kiesecker, J. Policy development for environmental licensing and biodiversity offsets in Latin America. PLoS ONE 9, e107144 (2014).

  22. 22.

    Shumway, N., Watson, J. E. M., Saunders, M. I. & Maron, M. The risks and opportunities of translating terrestrial biodiversity offsets to the marine realm. BioScience 68, 125–133 (2018).

  23. 23.

    Performance Standard 6: Biodiversity Conservation and Sustainable Management of Living Natural Resources (IFC World Bank Group, 2012).

  24. 24.

    Brauneder, K. M. et al. Global screening for Critical Habitat in the terrestrial realm. PLoS ONE 13, e0193102 (2018).

  25. 25.

    Maron, M., Bull, J. W., Evans, M. C. & Gordon, A. Locking in loss: baselines of decline in Australian biodiversity offset policies. Biol. Conserv. 192, 504–512 (2015).

  26. 26.

    Chape, S., Blyth, S., Fish, L., Fox, P. & Spalding, M. United Nations List of Protected Areas (IUCN, UNEP-WCMC, 2003).

  27. 27.

    Hardy, M. J., Fitzsimons, J. A., Bekessy, S. A. & Gordon, A. Purchase, protect, resell, repeat: an effective process for conserving biodiversity on private land?. Frontiers Ecol. Environ. 16, 336–344 (2018).

  28. 28.

    Rainey, H. J. et al. A review of corporate goals of no net loss and net positive impact on biodiversity. Oryx 49, 232–238 (2014).

  29. 29.

    Persson, J., Larsson, A. & Villarroya, A. Compensation in Swedish infrastructure projects and suggestions on policy improvements. Nat. Conserv. 11, 113–127 (2015).

  30. 30.

    Tucker, G. et al. Policy Options for an EU No Net Loss Initiative (Institute for European Environmental Policy, 2014).

  31. 31.

    Newing, H., Eagle, C., Puri, R. & Watson, C. W. Conducting Research in Conservation (Routledge, Abingdon-on-Thames, 2011).

  32. 32.

    Standard on Biodiversity Offsets (BBOP, 2012).

  33. 33.

    Gonçalves, B., Marques, A., Soares, A. M. V. D. M. & Pereira, M. Biodiversity offsets: from current challenges to harmonized metrics. Curr. Opin. Environ. Sustain. 14, 61–67 (2015).

  34. 34.

    Bull, J. W., Hardy, M. J., Moilanen, A. & Gordon, A. Categories of flexibility in biodiversity offsetting, and their implications for conservation. Biol. Conserv. 192, 522–532 (2015).

  35. 35.

    Gordon, A., Langford, W. T., White, M. D., Todd, J. A. & Bastin, L. Modelling trade offs between public and private conservation policies. Biol. Conserv. 144, 558–566 (2011).

  36. 36.

    Pullin, A. S., Frampton, G. K., Livoreil, B. & Petrokofsky, G. Guidelines and Standards for Evidence Synthesis in Environmental Management v.5.0 (Collaboration for Environmental Evidence, 2018);

  37. 37.

    ICMM, IUCN Independent Report on Biodiversity Offsets (The Biodiversity Consultancy, 2013);

  38. 38.

    Bull, J. W., Gordon, A., Watson, J. E. M. & Maron, M. Seeking convergence on key concepts in no net loss policy. J. Appl. Ecol. 53, 1686–1693 (2016).

  39. 39.

    Maron, M. et al. Faustian bargains? Restoration realities in the context of biodiversity offset policies. Biol. Conserv. 155, 141–148 (2012).

  40. 40.

    Curran, M., Hellweg, S. & Beck, J. Is there any empirical support for biodiversity offset policy? Ecol. Appl. 24, 617–632 (2014).

  41. 41.

    Bull, J. W., Gordon, A., Law, E. A., Suttle, K. B. & Milner-Gulland, E. J. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity. Conserv. Biol. 28, 799–809 (2014).

  42. 42.

    ISO/IEC Guide 98-3:2008 (ISO, 2008);

  43. 43.

    Regan, H. M., Colyvan, M. & Burgman, M. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002).

  44. 44.

    Gorrod, E. J. & Keith, D. A. Observer variation in field assessments of vegetation condition: implications for biodiversity conservation. Ecol. Manage. Rest. 10, 31–40 (2009).

Download references


We thank all those consulted (Supplementary Table 1) for supporting construction of the database. J.W.B. was funded by a Marie Skłodowska-Curie Action under the Horizon 2020 call H2020-MSCA-IF-2014 (grant number 655497). J.W.B. and N.S. acknowledge the Danish National Research Foundation for funding for the Center for Macroecology, Evolution and Climate (grant number DNRF96).

Author information




J.W.B. conceived of the study, developed the methodology, collected and analysed the data, and wrote the manuscript. N.S. developed the methodology and wrote the manuscript.

Corresponding author

Correspondence to Joseph William Bull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary Table 1, Supplementary Figure 1

Supplementary Data 1

A biodiversity offset database

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bull, J.W., Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat Sustain 1, 790–798 (2018).

Download citation

Further reading